#include<iostream>
#include<vector>
using namespace std;
//Definition for a binary tree node.
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
/*
* 方法一:将中序遍历的结果存入vector列表中,通过列表元素是否中心对称来判断二叉树是否对称的解题思路有误,如leetcode中[1,2,2,2,null,2]这个例子(最后一个null省略),就无法通过。
*/
//class Solution {
//public:
// bool isSymmetric(TreeNode* root) {
// bool result = true;
// if (!root) return result;
// vector<int> list;
// LDR_traversal(root, list);
// //判断中序结果是否对称
// int length = list.size();
// if (length % 2 == 0) {
// result == false;
// return result;
// }
// for (int i = 0; i < length / 2; i++)
// {
// if (list[i] != list[length - 1 - i])
// {
// result = false;
// break;
// }
// }
// return result;
// }
// void LDR_traversal(TreeNode*, vector<int>&);
//};
//
//void Solution::LDR_traversal(TreeNode* ptr, vector<int>& list) {
// if (ptr)
// {
// LDR_traversal(ptr->left, list);
// list.push_back(ptr->val);
// LDR_traversal(ptr->right, list);
// }
//}
/*
* 方法2:在方法一错误的基础上,另辟蹊径,联想到二叉树遍历的三种方式(DLR,LDR,LRD)不过都是人为规定的(优先向左),那么如果验证对称性,我们在这里不妨规定优先向右的DRL,同DLR作比较,若完全一样,说明该二叉树完全对称。
*/
class Solution {
public:
bool isSymmetric(TreeNode* root) {
bool result = true;
if (!root) return result;
Compare_DLR_and_DRL(root->left,root->right,result);
//判断先序结果是否一致
return result;
}
void Compare_DLR_and_DRL(TreeNode*, TreeNode*,bool&);
};
void Solution::Compare_DLR_and_DRL(TreeNode* l_ptr, TreeNode* r_ptr, bool& result) {
if (l_ptr && r_ptr && result)
{
if (l_ptr->val != r_ptr->val)
{
result = false;
return;
}
Compare_DLR_and_DRL(l_ptr->left, r_ptr->right,result);
Compare_DLR_and_DRL(l_ptr->right, r_ptr->left, result);
}
if ((!l_ptr^!r_ptr)&& result)
{
result = false;
return;
}
}