leetcode_101解题思路

#include<iostream>
#include<vector>
using namespace std;

//Definition for a binary tree node.
struct TreeNode {
    int val;
    TreeNode *left;
    TreeNode *right;
    TreeNode() : val(0), left(nullptr), right(nullptr) {}
    TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};

/*
 * 方法一:将中序遍历的结果存入vector列表中,通过列表元素是否中心对称来判断二叉树是否对称的解题思路有误如leetcode中[1,2,2,2,null,2]这个例子(最后一个null省略),就无法通过。
 */

//class Solution {
//public:
//    bool isSymmetric(TreeNode* root) {
//        bool result = true;
//        if (!root) return result;
//        vector<int> list;
//        LDR_traversal(root, list);
//        //判断中序结果是否对称
//        int length = list.size();
//        if (length % 2 == 0) {
//            result == false;
//            return result;
//        }
//        for (int i = 0; i < length / 2; i++)
//        {
//            if (list[i] != list[length - 1 - i])
//            {
//                result = false;
//                break;
//            }
//        }
//        return result;
//    }
//    void LDR_traversal(TreeNode*, vector<int>&);
//};
//
//void Solution::LDR_traversal(TreeNode* ptr, vector<int>& list) {
//    if (ptr)
//    {
//        LDR_traversal(ptr->left, list);
//        list.push_back(ptr->val);
//        LDR_traversal(ptr->right, list);
//    }
//}

/*
 * 方法2:在方法一错误的基础上,另辟蹊径,到二叉树遍历的三种方式(DLR,LDR,LRD)不过都是人为规定的(优先向左),那么如果验证对称性,我们在这里不妨规定优先向右的DRL,同DLR作比较,若完全一样,说明该二叉树完全对称。
 */

 class Solution {
 public:
     bool isSymmetric(TreeNode* root) {
         bool result = true;
         if (!root) return result;
         Compare_DLR_and_DRL(root->left,root->right,result);
         //判断先序结果是否一致
         return result;
     }
     void Compare_DLR_and_DRL(TreeNode*, TreeNode*,bool&);
 };
 
 void Solution::Compare_DLR_and_DRL(TreeNode* l_ptr, TreeNode* r_ptr, bool& result) {
     if (l_ptr && r_ptr && result)
     {
        if (l_ptr->val != r_ptr->val)
        {
            result = false;
            return;
        }
        Compare_DLR_and_DRL(l_ptr->left, r_ptr->right,result);
        Compare_DLR_and_DRL(l_ptr->right, r_ptr->left, result);
     }
    if ((!l_ptr^!r_ptr)&& result)
    {
        result = false;
        return;
    }
 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值