机器学习 | 朴素贝叶斯

1 什么是朴素贝叶斯?

首先上一个特别好的结构图:
在这里插入图片描述
结合上图可以看到,朴素贝叶斯属于线性分类中的软分类的概率生成模型。这就有一个问题了,什么叫概率生成模型?什么叫概率判别模型呢?

  • 监督学习方法可以分为生成方法和判别方法,对应所学到模型分别为生成模型和判别模型。

1、生成方法

  • 定义:由数据学习联合概率分布 P ( X , Y ) P(X,Y) P(X,Y),然后求出条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)作为预测的模型,即生成模型!
    P ( Y ∣ X ) = P ( X , Y ) P ( X ) P(Y|X) = \frac{P(X,Y)}{P(X)} P(YX)=P(X)P(X,Y)
  • 为什么这么叫?因为模型表示了给定输入X产生输出Y的生成关系!最终是将X数值代入计算后验概率,看哪个y对应的后验概率大即对应哪一个类别,而不是把y等于啥的具体表达式给写出来,然后计算y=1和y=0的概率!即区别于判别模型!
  • 典例:朴素贝叶斯,高斯判别分析,隐马尔可夫模型

2、判别方法

  • 定义:由数据直接学习决策函数 f ( X ) f(X) f(X)或者条件概率分布 P ( Y ∣ X ) P(Y|X) P(YX)作为预测模型,即为判别模型。它关心的是对于给定的X,用具体的表达式计算出预测概率,最终判定属于哪一个类别
  • 典例:逻辑回归,SVM,提升方法!

3、上述两者特点的比较:

  • 原理不同。生成方法是还原出联合概率分布,利用后验概率来进行预测。判别方法是学习条件概率或者决策函数,直接预测。
  • 学习速度不同。生成方法的学习收敛速度更快
  • 准确率不同。判别方法的准确率更高。

2 朴素贝叶斯的实现过程

2.1 基本思想

朴素贝叶斯的分类思想基于后验概率最大时对应的类别即为对应的预测类别,在计算这个后验概率的时候,有两个关键点:

  • 一是如何计算后验概率。后验概率 P ( Y ∣ X ) P(Y|X) P(YX)最大=y的先验概率 P ( Y ) P(Y) P(Y) × 条件概率 P ( X ∣ Y ) P(X|Y) P(XY) 最大化

y ^ = a r g m a x P ( Y ∣ X ) = a r g m a x ( P ( Y ) ∗ P ( X ∣ Y ) ) \hat{y}=argmaxP(Y|X)=argmax(P(Y)*P(X|Y)) y^=argmaxP(YX)=argmax(P(Y)P(XY))

  • 二是独立性假设。在计算条件概率 P ( X ∣ Y ) P(X|Y) P(XY)的时候用到了条件独立性假设!具体含义是指:
    在这里插入图片描述
  • 补充:在计算y的先验概率 P ( Y ) P(Y) P(Y)以及条件概率 P ( X ∣ Y ) P(X|Y) P(XY)的时候,可以采用两种估计方法极大似然估计贝叶斯估计(防止概率值为0,引入 λ \lambda λ λ = 1 \lambda=1 λ=1时称为拉普拉斯平滑

2.2 极大似然估计

  • 先验概率:
    在这里插入图片描述
  • 条件概率:
    在这里插入图片描述

2.3 贝叶斯估计

先验概率:
在这里插入图片描述

  • 其中k表示y的类别个数!

条件概率:
在这里插入图片描述

  • 其中 S j S_j Sj表示现在这个计算的类别变量总共有多少个类别!即有多少中不同的取值情况!

3 朴素贝叶斯算法

在这里插入图片描述

4 评价

优点:

  • 收敛速度较快。对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
  • 对缺失数据不太敏感
  • 算法比较简单,常用于文本分类。
  • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率

缺点:

  • 独立性假设太强了。这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
  • 需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
  • 准确率相比判别模型不太高。由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
  • 对输入数据的表达形式很敏感

5 Python实现

5.1 数据准备

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math
# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    # print(data)
    return data[:,:-1], data[:,-1]
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
X_test[0], y_test[0]
(array([5. , 2.3, 3.3, 1. ]), 1.0)

5.2 手写朴素贝叶斯

class NaiveBayes:
    def __init__(self):
        self.model = None

    # 数学期望
    @staticmethod
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X)))

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
        return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label:[] for label in labels}
        for f, label in zip(X, y):
            data[label].append(f)
        self.model = {label: self.summarize(value) for label, value in data.items()}
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
        return probabilities

    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0]
        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1

        return right / float(len(X_test))
model = NaiveBayes()
model.fit(X_train, y_train)
'gaussianNB train done!'
print(model.predict([4.4,  3.2,  1.3,  0.2]))
0.0
model.score(X_test, y_test)
1.0

5.3 sklearn.naive_bayes

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
GaussianNB(priors=None, var_smoothing=1e-09)
clf.score(X_test, y_test)
1.0
clf.predict([[4.4,  3.2,  1.3,  0.2]])
array([0.])
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型

6 参考

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值