OFA
本项目的原理、步骤适用于OFA中的Image Captioning算法,OFA项目中的其它算法使用方法类似。
论文
OFA: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework
模型结构
先将图像用卷积进行分块以降低计算量,再对每一块进行展平处理变成序列,然后将图像序列与NLP序列一起放入encoder编码,再将encoder编码与target在decoder中一起提取特征输出预测结果,整体结构由encoder-decoder组成。
算法原理
借鉴《Transformer is all you need!》算法论文中的Transformer结构,利用注意力模块attention提取特征,本文的核心思想是将文本、图像、检测目标用统一的词表进行序列编码,然后就可以用同一个模型结构训练、预测,从而使模型具有更强的通用性。
环境配置
mv OFA_pytorch OFA # 去框架名后缀
mkdir -p OFA/checkpoints
../../checkpoints/ofa_large.pt # finetune训练前,下载预训练权重ofa_large.pt到checkpoints文件夹下。