liveportrait_pytorch可以实现静态图模仿动态图面部动作AIGC模型

LivePortrait

论文

LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control

模型结构

模型基于face vid2vid,并在此基础上进行改进。主要为,使用ConvNeXt-V2-Tiny作为backbone将原始的规范隐式关键点检测器L、头部姿态估计网络H和表情变形估计网络 Δ统一成一个单一的模型M,使用SPADE decoder作为生成器(在最后一层插入PixelShuffle)。

算法原理

该算法采用基于隐式关键点框架,在模型中引入缩放因子,使用高质量数据集及级联损失函数进行两阶段训练。

环境配置

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10

docker run --shm-size 50g --network=host --name=liveportrait --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

pip install -r requirements_docker.txt

apt update && apt install ffmpeg

Dockerfile(方法二)

docker build -t <IMAGE_NAME>:<TAG> .

docker run --shm-size 50g --network=host --name=liveportrait --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v 项目地址(绝对路径):/home/ -v /opt/hyhal:/opt/hyhal:ro -it <your IMAGE ID> bash

pip install -r requirements_docker.txt

apt update && apt install ffmpeg

Anaconda (方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

DTK驱动:dtk24.04.1
python:python3.10
torch: 2.1.0
torchvision: 0.16.0
torchaudio: 2.1.2
triton: 2.1.0
onnxruntime: 1.15.0

Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应

2、其它非特殊库参照requirements.txt安装

pip install -r requirements_base.txt

conda install -c conda-forge ffmpeg

数据集

训练

推理

命令行

# 快速测试
python inference.py

# 指定图像及视频
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4

# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback

# 查看更多参数
python inference.py -h

# 使用pkl文件加速推理,同时保护隐私
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl

数据准备及处理

1、裁剪成 1:1 的宽高比(例如,512x512 或 256x256 像素),或者通过 --flag_crop_driving_video 启用自动裁剪。

2、关注头部区域,类似于示例视频

3、尽量减少肩膀的移动。

4、确保驱动视频的第一帧是正面表情的中性脸。

python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video

注意:如果您发现自动裁剪的结果不够理想,您可以修改 --scale_crop_video 和 --vy_ratio_crop_video 选项来调整缩放和偏移量,或者手动进行调整。

webui

python app.py --server_name 0.0.0.0 --server_port 12321

result

source imgdriving videooutput

从左至右依次为driving video, source video以及output

精度

应用场景

算法类别

AIGC

热点应用行业

零售,广媒,教育

预训练权重

Baidu Yun | SCNet 高速通道

pretrained_weights
├── insightface
│   └── models
│       └── buffalo_l
│           ├── 2d106det.onnx
│           └── det_10g.onnx
└── liveportrait
    ├── base_models
    │   ├── appearance_feature_extractor.pth
    │   ├── motion_extractor.pth
    │   ├── spade_generator.pth
    │   └── warping_module.pth
    ├── landmark.onnx
    └── retargeting_models
        └── stitching_retargeting_module.pth

源码仓库及问题反馈

参考资料

Release Notes

  • 更多特性请等待torch2.3
  • 16
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: segmentation_models_pytorch 是一个基于 PyTorch像分割库,可以用来训练语义分割模型。下面是使用 segmentation_models_pytorch 实现模型训练的基本步骤: 1. 安装 segmentation_models_pytorch 和其依赖项: ``` pip install segmentation-models-pytorch ``` 2. 加载数据集并进行预处理。可以使用 torchvision 或者其他像处理库加载数据集,并对数据进行预处理,如裁剪、缩放、归一化等操作。 3. 定义模型。使用 segmentation_models_pytorch 中提供的模型类(如 UNet、FPN、PSPNet 等)来定义模型。 ```python import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # 使用 ResNet34 作为编码器 encoder_weights="imagenet", # 加载预训练权重 in_channels=3, # 输入通道数 classes=2, # 分类数 ) ``` 4. 定义损失函数和优化器。可以选择使用交叉熵损失函数和 Adam 优化器。 ```python import torch.nn as nn import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 5. 训练模型。使用 DataLoader 加载数据集,并对模型进行训练。 ```python from torch.utils.data import DataLoader train_loader = DataLoader(dataset, batch_size=4, shuffle=True) for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}") ``` 6. 保存模型。训练完毕后,可以使用 torch.save() 方法将模型保存到本地。 ```python torch.save(model.state_dict(), "model.pth") ``` ### 回答2: segmentation_models_pytorch是一个基于PyTorch实现的语义分割模型库。使用segmentation_models_pytorch实现模型训练可以通过以下步骤完成。 首先,安装segmentation_models_pytorch库。可以通过pip install segmentation_models_pytorch命令来安装。 导入所需的库和模型。常用的库包括torch,torchvision和segmentation_models_pytorch。可以使用以下命令导入库: ```python import torch import torchvision.transforms as transforms import segmentation_models_pytorch as smp ``` 加载和预处理训练数据。可以使用torchvision中的transforms来定义一系列的数据预处理操作,例如裁剪、缩放和标准化等。之后,使用torch.utils.data.DataLoader来加载和批量处理数据。 定义模型架构。可以选择使用segmentation_models_pytorch中预定义的模型架构,例如UNet、PSPNet和DeepLab等。根据任务需求选择合适的模型,并初始化相关参数。 定义优化器和损失函数。常见的优化器有Adam和SGD等,损失函数常选择交叉熵损失函数。可以使用torch.optim中的函数来定义优化器,使用torch.nn中的损失函数来定义损失函数。 进行模型训练。使用torch.utils.data.DataLoader加载训练数据集,并迭代训练数据集中的每个批次。将批次数据输入模型中进行前向传播,获取模型的输出。计算损失,并进行反向传播更新模型的参数。重复以上步骤直到达到预定的训练轮数或达到设定的训练目标。 保存和加载训练好的模型。可以使用torch.save函数将训练好的模型保存到指定的文件路径,使用torch.load函数加载保存的模型文件。 以上是使用segmentation_models_pytorch实现模型训练的基本步骤。根据具体任务和数据的不同,可能还需要进行一些细节操作,例如数据增强、学习率调整和模型评估等。 ### 回答3: segmentation_models_pytorch是一个基于PyTorch的分割模型训练库,可以应用于像分割任务。下面我将介绍如何使用segmentation_models_pytorch实现模型训练。 首先,我们需要安装segmentation_models_pytorch库。可以使用pip命令进行安装: ``` pip install segmentation-models-pytorch ``` 在训练之前,我们需要准备好训练数据和标签。通常情况下,训练数据是一些像,标签则是对应每个像素点的分类或分割结果。 接下来,我们需要导入所需的库: ``` import segmentation_models_pytorch as smp import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset ``` 然后,我们需要创建一个自定义的数据集类,该类继承自torch.utils.data.Dataset类,并实现__len__和__getitem__方法,用于加载和处理数据。 接着,我们可以选择一个合适的分割模型,比如Unet、FPN等。这些模型可以通过调用smp库中的函数进行初始化,比如: ``` model = smp.Unet( encoder_name="resnet34", encoder_weights="imagenet", classes=1, activation='sigmoid' ) ``` 在这里,我们选择了一个使用ResNet-34作为编码器、预训练权重为ImageNet数据集、分类数为1(二分类问题)的Unet模型。 然后,我们可以定义损失函数和优化器: ``` criterion = nn.BCELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) ``` 接着,我们可以进行训练循环,依次迭代数据进行训练和优化: ``` for epoch in range(num_epochs): for batch in dataloader: inputs, labels = batch optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() ``` 最后,我们可以保存模型并在需要预测时加载模型进行测试: ``` torch.save(model.state_dict(), "segmentation_model.pt") model.load_state_dict(torch.load("segmentation_model.pt")) ``` 以上就是使用segmentation_models_pytorch实现模型训练的过程。根据具体任务需求,你也可以调整模型、损失函数、优化器等参数来进行更灵活的训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值