Pytorch中向量和张量

在 PyTorch 中,向量和张量是重要的概念,它们用于表示和操作数据。下面是对这两个概念的解释:

向量

  • 定义:向量是一个一维数组,它包含一系列有序排列的数字。在数学上,向量可以用于表示坐标、速度等物理量。
  • 在 PyTorch 中表示:在 PyTorch 中,向量通常是一个一维张量,形状为 [n],其中 n 是向量的长度。
  • 例子
import torch

# 创建一个一维张量,即向量
vector = torch.tensor([1.0, 2.0, 3.0])  # 形状为 [3]

张量

在 PyTorch 中,张量是最基本的数据结构,几乎所有的数据操作都是围绕张量进行的。通过熟悉向量和张量的操作,你可以处理和变换各种数据形式。

  • 定义:张量是一个多维数组的泛化,可以看作是标量、向量和矩阵的扩展。张量可以有任意多个维度,每个维度包含若干个数值。张量是表示多维数据的核心数据结构。

  • 在 PyTorch 中表示:在 PyTorch 中,张量是 torch.Tensor 类的实例。它可以有任意维度,并且支持多种操作,比如加减乘除、矩阵乘法、广播等。

  • 维度(Rank)

    • 0 维张量:标量(scalar),形状为 []
    • 1 维张量:向量(vector),形状为 [n]
    • 2 维张量:矩阵(matrix),形状为 [m, n]
    • 3 维及以上张量:更高维度的张量,形状为 [d1, d2, d3, ..., dn]
  • 例子

  • import torch
    
    # 创建一个二维张量(矩阵)
    matrix = torch.tensor([[1.0, 2.0, 3.0],
                           [4.0, 5.0, 6.0]])  # 形状为 [2, 3]
    
    # 创建一个三维张量
    tensor_3d = torch.tensor([[[1.0, 2.0],
                               [3.0, 4.0]],
                              [[5.0, 6.0],
                               [7.0, 8.0]]])  # 形状为 [2, 2, 2]
    

    总结

  • 向量 是一种特殊的 张量,其维度为 1,形状为 [n]
  • 张量 是一个更广泛的概念,可以表示标量、向量、矩阵以及更高维的数组。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值