常用分类器笔记

这篇博客详细记录了常用分类器的使用心得与应用场合,包括它们的优缺点和实际项目中的表现。
摘要由CSDN通过智能技术生成

常用几种分类器的应用笔记

# -- coding: utf-8 --
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import warnings
warnings.filterwarnings("ignore", category=FutureWarning, module="sklearn", lineno=196)

train = pd.read_excel('D:/PyWork/train_data.xlsx')
test = pd.read_excel('D:/PyWork/test_data.xlsx')
m, n = train.shape
train_da= np.array(train)
train_data = train_da[:, :n-1]
train_label = train_da[:, n-1]

test_da = np.array(test)
test_data = test_da[:, :n-1]
test_label = test_da[:, n-1]

from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier


clf = DecisionTreeClassifier
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值