179种分类器大评测
300包薯片,我们吃完了!
179种分类器,我们测完了!
资料来源
2014年名为
Do we Need Hundreds of Classifiers to Solve Real World Classification Problems?
的文章中(截止目前,被引 823 次),研究人员对 17 个家族,179 个分类器,在 121 个数据集上的表现进行了评测!
上结果
分类器排名
第一是随机森林(Random Forest, RF)!
使用 R 语言中 Caret 库实现,which achieves 94.1% of the maximum accuracy overcoming 90% in the 84.3% of the data sets. <- 这句话我咋没理顺…
突然觉得实验室弥漫的随机森林风似乎很清新…
虽然数据上是第一,但与第二并未表现出效果上的显著性差异(意思就是,第二和第一差不多)
第二是高斯核-支持向量机(SVM with Gaussian Kernel)
使用 C 语言中 LibSVM 库实现,which achieves 92.3% of the maximum accuracy.
当然还有一些模型也不错,显著优于其他的分类器,包括:
- SVM with polynomial kernels
- extreme learning machine with Gaussian kernel
- C5.0
- avNNet (a committee of multi-layer perceptrons implemented in R with the caret package)
家族排名
第一名,随机森林家族,前5里有3个该家族的
第二名:SVM家族,前10里有4个
第三名:神经网络家族,前20里有5个
第四名:Boosting家族,