转载“克鲁斯卡尔算法的详解”

此文转载自“w1085541827”

并查集的一些个人观点 以及克鲁斯卡尔算法的详解

发表于2016/7/31 3:11:06  840人阅读

分类: 数据结构

先抛出个问题,什么是并查集,它有什么用?

看我这篇Blog的人想必就为了弄明白,下面写出我个人的一些观点。


1 什么是并查集,以及并查集要完成的目标。

举个例子,通火车要修路,已经修了一部分了,但各个地方零零散散的没有统一成一个整体的铁路网,中国这么多地方,我不能每个地方都直接联系,这样花费的代价也太大了。所以我们这样想,只要从一个地方能去中国任意一个地方就好了,用不着每个地方都相互有专门的铁路。这就衍生了一个问题,我怎么知道我要去的地方在不在我这个铁路网里?我该不该修到这儿的铁路?不好判断是吧,这就用到了并查集思想。

并查集主要用在判断一个图中的两个顶点是否能相联通的问题。

2 实现并查集的思想。

既然顶点与顶点能直接相同,那么他们一定处于同一张连通网中。因此,我们可以把不同的连通网分别看成一个个集合。我们要判断两点是否相通,可以检索这两点是否在同一张连通网里,在就能相通,反之不能。

所以,我们应该怎样设计,使得我们能判断两点是否在同一张网里是问题的关键。

这时,我们自然而然的想到了,如果每一个点都能用这个网中的固定点表示(姑且把这个点称为BOSS),那么问题就解决了。例如下图,我们要判断A和B是否能相通,A找啊找找到A的BOSS是BOSS1,B也找啊找,找到B的BOSS也是BOSS1。说明他们位于同一张联通图中,即他们能过去。

但是这找BOSS还是好麻烦,不好找,如果是两棵树的话就好多了,直接以根节点作为所有节点的BOSS,每棵树只需要知道它自己的上级是谁,一层一层往上找,最终就找到BOSS了。例如: 要找G和B是否位于同一张网,G开始找BOSS,G的上级是D,D的上级是A,A就是BOSS,返回G的BOSS为A。同理,B找到BOSS也是A。说明他们位于同一张网中。再例如我要判断E和N是否能相通,我就找E的BOSS,再找N的BOSS,明显A不等于H。所以他们不能连通。

总而言之,并查集就是把每堆元素合并为一个具有相同BOSS的集合,如果两堆元素BOSS不同,说明他们不连通,反之连通。

3 实例代码实现

我认为主体分为四个部分

(1)建立并查集(用数组也好,链表也行),我就用数组举个例子

int parent[maxSize];

这里下标代表顶点编号,元素代表它的上级(就是通过上级找上级.....最终能找到它的BOSS)。

(2)初始化并查集

for(int i  = 0 ; i < N ;++i) 

{

parent[i] = i;

}

这里的N代表顶点的个数,首先默认每个顶点都不能互相联系,每一个顶点自己就是一个集合,故a[i] = i;它的上级就是它自己,它就是BOSS。

(3)构造一个查找BOSS的算法,我用迭代的方式给出(递归也能写)

int getBoss(int a)

{

while(a != parent[a])  a = parent[a];

return a ;

}

while循环的意思的如果传进来的a已经是BOSS,直接输出,否则进行查找([注]根据存放的值可以找到它上级,它的上级又继续查找它上级的上级,直到a==parent[a]说明找到了,返回a)

(4)判断将顶点合并进同一个集合(有同一个BOSS),我用迭代的方法做个例子

void merge()

{

int a , b;

a = getBoss(c);

b = getBoss(d);

   if(a != b)

   {

      parent[a] = b;

   }

}

c,d代表传进来的顶点元素下标,如果两个BOSS不相等,说明不在同一棵树中,即不会产生循环,把b归于a的集合,从此他们就在一棵树中,共同拥有一个BOSS


以上代码也可以作为模板。

举个应用的例子

此段代码是克鲁斯卡尔算法求最小生成树


最后举出一些实际应用的例子

整幅图的连通性问题。比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。问还需要修几条路,实质就是求有几个连通分支。等等。。


有什么不对的,欢迎指正!

注释很详细了已经,关于并查集的压缩路径下次再说,写不动了啊!!!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值