用Excel分析面包店的销售方案

本文通过Excel分析面包店的销售数据,探讨最佳销售产品、销售高峰期以及产品组合。发现coffee销售量最高,早晚时段销售旺盛,常有咖啡与面包的组合购买。文章还涉及数据清洗、异常值处理、数据透视表的使用,以及如何处理数据分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、提出问题

1、哪一种物品是卖得最好的?

2、在一天中什么时间段,面包店的销售量最高?

3、客人单次购买一次购买几种产品,那些产品更多组合购买,可否针对此店家进行组合销售?

二、理解数据

理解数据集列名,数据集中一共四个列名:日期、时间、交易号、产品,数据集的列名较为简单,不是很难理解。其中相同的交易号意味着同一次购买多种物品。

三、数据清洗

1.选择子集

因为数据中只有四列数据,每一个列都可以提供帮助,选择都不隐藏(清洗数据时,不建议删除数据列,可隐藏,或备份后再处理)

2.列名重命名

鼠标点击相应列名可以直接修改。

3.删除重复项

因为此数据中没有唯一标识码,而且因为是交易的流水数据,因此同一个商品在同一次购买中可能出现两次。如果有需要处理,可点击删除重复项的工具,弹出的对话框中选择唯一标识列,可以是多个的。

4.缺失值处理

这个数据集相对简单,记录流水数据,缺少记录的可能性不高,我们平常数据可能出现缺失值,可能是忘记登记数据、爬虫时丢失数据等等,对比几列的数据行,如果相等表示无缺失。

缺失值处理

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值