一、算法介绍
最小均方算法(Least Mean Square,LMS)由 Bernard Widrow 和 Marcian E. Hoff 提出,用于修正滤波器参数使均方差(Mean Square Error,MSE)达到最小。
LMS算法可认为是机器学习里面最基本也比较有用的算法,神经网络中对参数的学习使用的就是LMS的思想,在通信信号处理领域LMS
本文介绍了最小均方算法(LMS),该算法由Bernard Widrow和Marcian E. Hoff提出,主要应用于滤波器参数的修正,以最小化均方差。LMS在机器学习和通信信号处理中有广泛应用,如自适应滤波器。文章概述了LMS的基本结构,包括线性组合器和误差信号的计算,并提到了几种优化方式。
一、算法介绍
最小均方算法(Least Mean Square,LMS)由 Bernard Widrow 和 Marcian E. Hoff 提出,用于修正滤波器参数使均方差(Mean Square Error,MSE)达到最小。
LMS算法可认为是机器学习里面最基本也比较有用的算法,神经网络中对参数的学习使用的就是LMS的思想,在通信信号处理领域LMS
2163

被折叠的 条评论
为什么被折叠?