98. 验证二叉搜索树
思路1:递归
二查搜索树直接的定义是左小右大,但是是子树而非节点。
这里通过递归判断当前节点是否满足:max(left)<root<min(right)
这里的low和high可以通过调用时进行修改。
时间复杂度:O(N)
空间复杂度:O(N)
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
# max(left)<root<min(right)
def helper(root,low,high):
if not root:return True
if not low<root.val<high:return False
return helper(root.left,low,root.val) and helper(root.right,root.val,high)
return helper(root,float('-inf'),float('inf'))
思路2:验证中序非递归是否有序
直接根据二查搜索树的性质,验证中序非递归是否有序:每次检查输出是否比上次输出大。比二叉树的非递归增加的内容主要是输出时的判断操作。
时间复杂度:O(N)
空间复杂度:O(N)
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
# 验证中序非递归是否有序:每次检查输出是否比上次输出大
pre=float('-inf') # 初始化最小数
stack = []
p = root
while p or stack:
while p:
stack.append(p)
p = p.left
p = stack.pop(-1)
if p.val<=pre: # 增加判断操作
return False
else:
pre = p.val
p= p.right
return True
450. 删除二叉搜索树中的节点
思路:递归
考虑删除节点A,有下面三种情况:
情况 1:A 恰好是末端节点,两个子节点都为空,可直接删除。
情况 2:A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。
情况 3:A 有两个子节点,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。
class Solution:
def deleteNode(self, root: TreeNode, key: int) -> TreeNode:
if not root: return None
if root.val == key:
if not root.left: return root.right
if not root.right: return root.left
leftMax = self.getLeftMax(root.left)
root.val = leftMax.val
root.left = self.deleteNode(root.left,leftMax.val)
elif root.val>key:
root.left = self.deleteNode(root.left,key)
else:
root.right = self.deleteNode(root.right,key)
return root
def getLeftMax(self,node): # 获取左边的最大值节点
while node.right:
node = node.right
return node