第八章 kafka专题之项目中SpringBoot整合Kafka

1、SpringBoot连接kafka集群进行测试

(1)创建Topic

bin/kafka-topics.sh --zookeeper hadoop102:2181/kafka --create --replication-factor 3 --partitions 1 --topic springboot

(2)SpringBoot项目测试

  • 需求:将分区数目增加至为8
package net.testclass.testclasskafka;

import org.apache.kafka.clients.admin.*;
import org.junit.jupiter.api.Test;

import java.util.*;
import java.util.concurrent.ExecutionException;

public class KafkaAdminTest {
    // 1、定义topic名称
    private static final String TOPIC_NAME = "springboot";

    // 2、设置admin客户端
    public static AdminClient initAdiminClient(){
        Properties properties = new Properties();
        //指定服务ip
        properties.setProperty(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.6.102:9092,192.168.6.103:9092,192.168.6.104:9092");

        //创建客户端
        AdminClient adminClient = AdminClient.create(properties);
        return adminClient;
    }
    // 3、获取topic
    @Test
    public void descTopic() throws ExecutionException, InterruptedException {
        AdminClient adminClient = initAdiminClient();

        // 3.1 增加分区到12个
        NewPartitions newPartitions = NewPartitions.increaseTo(8);

        // 3.2、创建Map并将topic名称、增加分区数传入其中
        Map<String,NewPartitions> infoMap = new HashMap<>();
        infoMap.put(TOPIC_NAME,newPartitions);

        // 3.3、将Map传入接口
        CreatePartitionsResult createPartitionsResult= adminClient.createPartitions(infoMap);

        // 3.4、抛异常
        createPartitionsResult.all().get();
    }
}

(3)查看更改后的topic配置信息

bin/kafka-topics.sh --describe  --zookeeper hadoop102:2181/kafka --topic springboot

在这里插入图片描述

2、SpringBoot项目整合Spring-kafka依赖发送消息

  • 项目目录如下

在这里插入图片描述

(1)添加依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>
	<parent>
		<groupId>org.springframework.boot</groupId>
		<artifactId>spring-boot-starter-parent</artifactId>
		<version>2.5.8</version>
		<relativePath/> <!-- lookup parent from repository -->
	</parent>
	<groupId>net.testclass</groupId>
	<artifactId>testclass-kafka</artifactId>
	<version>0.0.1-SNAPSHOT</version>
	<name>testclass-kafka</name>
	<description>Demo project for Spring Boot</description>
	<properties>
		<java.version>1.8</java.version>
	</properties>
	<dependencies>
		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-web</artifactId>
		</dependency>

		<dependency>
			<groupId>org.springframework.boot</groupId>
			<artifactId>spring-boot-starter-test</artifactId>
			<scope>test</scope>
		</dependency>
<!--		<dependency>-->
<!--			<groupId>org.apache.kafka</groupId>-->
<!--			<artifactId>kafka-clients</artifactId>-->
<!--			<version>2.4.0</version>-->
<!--		</dependency>-->
		<dependency>
			<groupId>org.springframework.kafka</groupId>
			<artifactId>spring-kafka</artifactId>
		</dependency>
	</dependencies>

	<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.boot</groupId>
				<artifactId>spring-boot-maven-plugin</artifactId>
			</plugin>
		</plugins>
	</build>
</project>

(2)application配置文件修改增加生产者信息

server:
  port: 8080
logging:
  config: classpath:logback.xml
spring:
  kafka:
    bootstrap-servers: 192.168.6.102:9092,192.168.6.103:9092,192.168.6.104:9092
    producer:
      # 消息重发的次数
      retries: 3
      # 一个批次可以使用的内存大小
      batch-size: 16384
      # 设置生产者内存缓冲区的大小
      buffer-memory: 33554432
      # 键的序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 值的序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      acks: all

(3)编写Controller

package net.testclass.testclasskafka.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class UserController {

    // 1、声明topic
    private static final String TOPIC_NAME="springboot";


    // 2、注入kafka
    @Autowired
    private KafkaTemplate<String,Object> kafkaTemplate;

    // 3、模拟发送消息
    @ResponseBody
    @GetMapping("/api/v1/{num}")
    public void sendMessage(@PathVariable("num") String num){
        kafkaTemplate.send(TOPIC_NAME,"这是一个消息,num="+num).addCallback(success->{
            // 消息发送的topic
            String topic = success.getRecordMetadata().topic();
            // 消息发送的分区
            int partition = success.getRecordMetadata().partition();
            // 消息在分区内的offset
            long offset = success.getRecordMetadata().offset();
            System.out.println(""+ topic + "-" + partition + "-" + offset);
        }, failure -> {
            System.out.println("发送消息失败:" + failure.getMessage());
        });
    }
}

(4)编写Application启动类

package net.testclass.testclasskafka;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class KafkaApplication {

	public static void main(String[] args) {

		SpringApplication.run(KafkaApplication.class, args);
	}
}

(5)发送消息

在google浏览器中输入:http://localhost:8080/api/v1/222

在这里插入图片描述
(6)运行结果

在这里插入图片描述

3、SpringBoot项目整合Spring-kafka依赖消费消息

  • 项目目录

在这里插入图片描述

(1)application配置文件

server:
  port: 8080
logging:
  config: classpath:logback.xml
spring:
  kafka:
    bootstrap-servers: 192.168.6.102:9092,192.168.6.103:9092,192.168.6.104:9092

    # 配置生产者
    producer:
      # 消息重发的次数
      retries: 3
      # 一个批次可以使用的内存大小
      batch-size: 16384
      # 设置生产者内存缓冲区的大小
      buffer-memory: 33554432
      # 键的序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 值的序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      acks: all

    # 配置消费者
    consumer:
      # 自动提交的时间间隔,在SpringBoot2.x版本是值的类型为Duration,需要付恶化特定的格式,如1S,1M,1H,1D
      auto-commit-interval: 1S
      # 指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该做如何处理
      auto-offset-reset: earliest
      # 是否自动提交偏移量,默认值是ture,为了避免出现重复数据,可以把它设置为false,然后手动提交偏移量
      enable-auto-commit: false
      # 键的反序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringDeSerializer
      # 值的反序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringDeSerializer

    listener:
      # 手工ack,调用ack后立刻提交offset
      ack-mode: manual_immediate
      # 容器运行的线程数
      concurrency: 4

(2)编写消费监听器

package net.testclass.testclasskafka.mq;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.support.Acknowledgment;
import org.springframework.kafka.support.KafkaHeaders;
import org.springframework.messaging.handler.annotation.Header;
import org.springframework.stereotype.Component;

@Component
public class MQListener {
    @KafkaListener(topics = {"springboot"},groupId = "G1")
    public void onMessage(ConsumerRecord<?,?>record, Acknowledgment ack,
                          @Header(KafkaHeaders.RECEIVED_TOPIC) String topic){
        System.out.println("消费消息"+record.topic() + ",partition:" + ",value" + record.value());

        ack.acknowledge();
    }
}

(3)调试运行

在浏览器中输入://localhost:8080/api/v1/1996

在这里插入图片描述

(4)运行结果

在这里插入图片描述

4、SpringBoot整合kafka事务消息实战(注解式事务)

(1)application配置文件编写

server:
  port: 8080
logging:
  config: classpath:logback.xml
spring:
  kafka:
    bootstrap-servers: 192.168.6.102:9092,192.168.6.103:9092,192.168.6.104:9092

    # 配置生产者
    producer:
      # 消息重发的次数
      retries: 3
      # 一个批次可以使用的内存大小
      batch-size: 16384
      # 设置生产者内存缓冲区的大小
      buffer-memory: 33554432
      # 键的序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 值的序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      # acks: all
      # 事务id
      transaction-id-prefix: xdclass-tran

    # 配置消费者
    consumer:
      # 自动提交的时间间隔,在SpringBoot2.x版本是值的类型为Duration,需要付恶化特定的格式,如1S,1M,1H,1D
      auto-commit-interval: 1S
      # 指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该做如何处理
      auto-offset-reset: earliest
      # 是否自动提交偏移量,默认值是ture,为了避免出现重复数据,可以把它设置为false,然后手动提交偏移量
      enable-auto-commit: false
      # 键的反序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringDeSerializer
      # 值的反序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringDeSerializer

    listener:
      # 手工ack,调用ack后立刻提交offset
      ack-mode: manual_immediate
      # 容器运行的线程数
      concurrency: 4

(2)编写UserController

package net.testclass.testclasskafka.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class UserController {

    // 1、声明topic
    private static final String TOPIC_NAME="springboot";


    // 2、注入kafka
    @Autowired
    private KafkaTemplate<String,Object> kafkaTemplate;

    // 3、模拟发送消息
    @GetMapping("/api/v1/{num}")
    public void sendMessage(@PathVariable("num") String num){
        kafkaTemplate.send(TOPIC_NAME,"这是一个消息,num="+num).addCallback(success->{
            // 消息发送的topic
            String topic = success.getRecordMetadata().topic();
            // 消息发送的分区
            int partition = success.getRecordMetadata().partition();
            // 消息在分区内的offset
            long offset = success.getRecordMetadata().offset();
            System.out.println("发送成功:topic="+ topic + ",partition=" + partition + ",offset=" + offset);
        }, failure -> {
            System.out.println("发送消息失败:" + failure.getMessage());
        });
    }

    // 4、注解方式的事务消息
    @GetMapping("/api/v1/tran1")
    @Transactional(rollbackFor = RuntimeException.class)
    public void sendMessage1(int num){
        kafkaTemplate.send(TOPIC_NAME,"这是个事务消息1 i="+num);

        if(num == 0){
            throw new RuntimeException();
        }

        kafkaTemplate.send(TOPIC_NAME,"这是个事务消息2 i="+num);
    }

}

(3)调试运行一

在浏览器中输入://localhost:8080/api/v1/tran1?num=1996

在这里插入图片描述

(4)运行结果一

  • 两个消息都发送出去

在这里插入图片描述

(5)调试运行二

在浏览器中输入://localhost:8080/api/v1/tran1?num=0

在这里插入图片描述

(6)运行结果二

  • 两个消息都没发送出去(事务回滚)

在这里插入图片描述

5、SpringBoot整合kafka事务消息实战(声明式事务)

(1)application配置文件编写

server:
  port: 8080
logging:
  config: classpath:logback.xml
spring:
  kafka:
    bootstrap-servers: 192.168.6.102:9092,192.168.6.103:9092,192.168.6.104:9092

    # 配置生产者
    producer:
      # 消息重发的次数
      retries: 3
      # 一个批次可以使用的内存大小
      batch-size: 16384
      # 设置生产者内存缓冲区的大小
      buffer-memory: 33554432
      # 键的序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      # 值的序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      # acks: all
      # 事务id
      transaction-id-prefix: xdclass-tran

    # 配置消费者
    consumer:
      # 自动提交的时间间隔,在SpringBoot2.x版本是值的类型为Duration,需要付恶化特定的格式,如1S,1M,1H,1D
      auto-commit-interval: 1S
      # 指定了消费者在读取一个没有偏移量的分区或者偏移量无效的情况下该做如何处理
      auto-offset-reset: earliest
      # 是否自动提交偏移量,默认值是ture,为了避免出现重复数据,可以把它设置为false,然后手动提交偏移量
      enable-auto-commit: false
      # 键的反序列化方式
      key-serializer: org.apache.kafka.common.serialization.StringDeSerializer
      # 值的反序列化方式
      value-serializer: org.apache.kafka.common.serialization.StringDeSerializer

    listener:
      # 手工ack,调用ack后立刻提交offset
      ack-mode: manual_immediate
      # 容器运行的线程数
      concurrency: 4

(2)编写UserController

package net.testclass.testclasskafka.controller;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaOperations;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class UserController {

    // 1、声明topic
    private static final String TOPIC_NAME="springboot";


    // 2、注入kafka
    @Autowired
    private KafkaTemplate<String,Object> kafkaTemplate;

    // 3、模拟发送消息
    @GetMapping("/api/v1/{num}")
    public void sendMessage(@PathVariable("num") String num){
        kafkaTemplate.send(TOPIC_NAME,"这是一个消息,num="+num).addCallback(success->{
            // 消息发送的topic
            String topic = success.getRecordMetadata().topic();
            // 消息发送的分区
            int partition = success.getRecordMetadata().partition();
            // 消息在分区内的offset
            long offset = success.getRecordMetadata().offset();
            System.out.println("发送成功:topic="+ topic + ",partition=" + partition + ",offset=" + offset);
        }, failure -> {
            System.out.println("发送消息失败:" + failure.getMessage());
        });
    }

    // 4、声明方式的事务消息
    @GetMapping("/api/v1/tran1")
    public void sendMessage1(int num){
        kafkaTemplate.executeInTransaction(new KafkaOperations.OperationsCallback<String, Object, Object>() {
            @Override
            public Object doInOperations(KafkaOperations<String,Object> kafkaOperations){
                kafkaTemplate.send(TOPIC_NAME,"这是个事务消息1 i="+num);

                if(num == 0){
                    throw new RuntimeException();
                }

                kafkaTemplate.send(TOPIC_NAME,"这是个事务消息2 i="+num);
                return true;
            }
        });
    }

}

(3)调试运行一

在浏览器中输入://localhost:8080/api/v1/tran1?num=1996

在这里插入图片描述

(4)运行结果一

  • 两个消息都发送出去

在这里插入图片描述

(5)调试运行二

在浏览器中输入://localhost:8080/api/v1/tran1?num=0

在这里插入图片描述

(6)运行结果二

  • 两个消息都没发送出去(事务回滚)

在这里插入图片描述

Java8新特性及实战视频教程完整版Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。Stream 使用一种类似用 SQL 语句从数据库查询数据的直观方式来提供一种对 Java 集合运算和表达的高阶抽象。Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看作一种流, 流在管道传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。元素流在管道经过间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。 Lambda 表达式,也可称为闭包,它是推动 Java 8 发布的最重要新特性。Lambda 允许把函数作为一个方法的参数(函数作为参数传递进方法)。使用Lambda 表达式可以使代码变的更加简洁紧凑。Java8实战视频-01让方法参数具备行为能力Java8实战视频-02Lambda表达式初探Java8实战视频-03Lambda语法精讲Java8实战视频-04Lambda使用深入解析Java8实战视频-05Lambda方法推导详细解析-上.wmvJava8实战视频-06Lambda方法推导详细解析-下Java8实战视频-07Stream入门及Stream在JVM的线程表现Java8实战视频-08Stream知识点总结Stream源码阅读Java8实战视频-09如何创建Stream上集Java8实战视频-10如何创建Stream下集.wmvJava8实战视频-11Stream之filter,distinct,skip,limit,map,flatmap详细介绍Java8实战视频-12Stream之Find,Match,Reduce详细介绍Java8实战视频-13NumericStream的详细介绍以及和Stream之间的相互转换Java8实战视频-14Stream综合练习,熟练掌握API的用法Java8实战视频-15在Optional出现之前经常遇到的空指针异常.wmvJava8实战视频-16Optional的介绍以及API的详解Java8实战视频-17Optional之flatMap,综合练习,Optional源码剖析Java8实战视频-18初识Collector体会Collector的强大Java8实战视频-19Collector使用方法深入详细介绍-01Java8实战视频-20Collector使用方法深入详细介绍-02Java8实战视频-21Collector使用方法深入详细介绍-03.wmvJava8实战视频-22Collector使用方法深入详细介绍-04Java8实战视频-23Collector原理讲解,JDK自带Collector源码深度剖析Java8实战视频-24自定义Collector,结合Stream的使用详细介绍Java8实战视频-25Parallel Stream编程体验,充分利用多核机器加快计算速度Java8实战视频-26Fork Join框架实例深入讲解Java8实战视频-27Spliterator接口源码剖析以及自定义Spliterator实现一个Stream.wmvJava8实战视频-28Default方法的介绍和简单的例子Java8实战视频-29Default方法解决多重继承冲突的三大原则详细介绍Java8实战视频-30多线程Future设计模式原理详细介绍,并且实现一个Future程序Java8实战视频-31JDK自带Future,Callable,ExecutorService介绍Java8实战视频-32实现一个异步基于事件回调的Future程序.wmvJava8实战视频-33CompletableFuture用法入门介绍Java8实战视频-34CompletableFuture之supplyAsync详细介绍Java8实战视频-35CompletableFuture流水线工作,join多个异步任务详细讲解Java8实战视频-36CompletableFuture常用API的重点详解-上Java8实战视频-37CompletableFuture常用API的重点详解-下Java8实战视频-38JDK老DateAPI存在的问题,新的DateAPI之LocalDate用法及其介绍.wmvJava8实战视频-39New Date API之LocalTime,LocalDateTime,Instant,Duration,Period详细介绍Java8实战视频-40New Date API之format和parse介绍
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

随缘清风殇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值