题意:
给一个m大小的数的集合,让你求另外一个集合
集合里的数都 < n,集合里的数都是给的集合的某个数的倍数
问你求的这个集合的最多数量
思路:
求小于n的数并且是t的倍数的个数是(n-1)/t
把每个数都看做一个事件,就求出来(n-1)/A[i]
然后减去两个事件相交的数量,-(n-1)/lcm(A[i]*A[j])
然后加上三个事件相交的数量,+(n-1)/lcm(A[i]*A[j]*A[k])
…..
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
using namespace std;
#define lowbit(x) (x&(-x))
typedef long long LL;
const int maxn = 100005;
const int inf=(1<<28)-1;
int n,m;
int A[15];
int Gcd(int a,int b)
{
if(!a) return b;
return Gcd(b%a,a);
}
int lcm(int a,int b)
{
return a/Gcd(a,b)*b;
}
LL dfs(int pos,int Now,int step)
{
LL Ans=0;
if(Now>m) return 0;
if(pos==n)
{
if(step==0) return 0;
if(step&1)
Ans+=m/Now;
else
Ans-=m/Now;
return Ans;
}
Ans+=dfs(pos+1,Now,step);
Ans+=dfs(pos+1,lcm(Now,A[pos]),step+1);
return Ans;
}
int main()
{
while(~scanf("%d%d",&m,&n))
{
m--;
int k=0;
for(int i=0;i<n;++i)
{
scanf("%d",&A[k++]);
if(A[k-1]==0) k--;
}
n=k;
LL Ans=0;
Ans=dfs(0,1,0);
printf("%lld\n",Ans);
}
return 0;
}