容斥原理1002 HDU 1796

题意:
给一个m大小的数的集合,让你求另外一个集合
集合里的数都 < n,集合里的数都是给的集合的某个数的倍数
问你求的这个集合的最多数量
思路:
求小于n的数并且是t的倍数的个数是(n-1)/t
把每个数都看做一个事件,就求出来(n-1)/A[i]
然后减去两个事件相交的数量,-(n-1)/lcm(A[i]*A[j])
然后加上三个事件相交的数量,+(n-1)/lcm(A[i]*A[j]*A[k])
…..

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<vector>
#include<map>
#include<set>
#include<stdlib.h>
using namespace std;
#define lowbit(x) (x&(-x))
typedef long long LL;
const int maxn = 100005;
const int inf=(1<<28)-1;
int n,m;
int A[15];
int Gcd(int a,int b)
{
    if(!a) return b;
    return Gcd(b%a,a);
}
int lcm(int a,int b)
{
    return a/Gcd(a,b)*b;
}
LL dfs(int pos,int Now,int step)
{
    LL Ans=0;
    if(Now>m) return 0;
    if(pos==n)
    {
        if(step==0) return 0;
        if(step&1)
            Ans+=m/Now;
        else
            Ans-=m/Now;
        return Ans;
    }
    Ans+=dfs(pos+1,Now,step);
    Ans+=dfs(pos+1,lcm(Now,A[pos]),step+1);
    return Ans;
}
int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        m--;
        int k=0;
        for(int i=0;i<n;++i)
        {
            scanf("%d",&A[k++]);
            if(A[k-1]==0) k--;
        }
        n=k;
        LL Ans=0;
        Ans=dfs(0,1,0);
        printf("%lld\n",Ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值