hdu1796 容斥原理

题意:
找一个集合中所有数的小于n的倍数的不重复的个数

思路:
很模板的容斥原理,其实最快的方法是筛出每个数的最小质因子,去重再dfs,不过数据很小随便了,这里放一下容斥原理的两个dfs模板,都是O(n*2^n)的,但dfs实际上常数小,加上剪枝,甚至快个1~2s都可能

第一种dfs(限制次数型的)

void dfs(int pos,int num,int res)
{
   if(res==0){ 
        if(i&1)
            sum+=num;
        else sum-=num;
      return;
   }
   if(pos==数组个数)return;
   if(p[pos]*num<60)dfs(pos+1,num*p[pos],res-1);//选
   dfs(pos+1,num,res);//不选
   return;
}
for(i=1;i<=limit;++i)
	dfs(1,1,i);

第二种是枚举起点位置直接扫整个数组(这个剪枝方便,推荐这个

void dfs(int cur, long long lcm, int id)//id表示选第几个
{
    lcm = a[cur]/gcd(a[cur],lcm)*lcm;
    if(lcm>n-1)return;
    if(id&1)
        ans += (n-1)/lcm;
    else ans -= (n-1)/lcm;
    for(int i = cur + 1; i < cnt; i++)
    {
        dfs(i,lcm,id+1);
    }
}
//枚举起点
for(i=0;i<cnt;++i)
	dfs(i,a[i],1);

题解:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>

using namespace std;

int n, m, cnt;
long long ans, a[20];

long long gcd(long long a, long long b)
{
    return b == 0 ? a : gcd(b,a%b);
}
//cur表示当前的数
//lcm表示最小公倍数
//id表示选了几个数,奇数则加,偶数则减
void dfs(int cur, long long lcm, int id)
{
    lcm = a[cur]/gcd(a[cur],lcm)*lcm;
    if(id&1)
        ans += (n-1)/lcm;
    else ans -= (n-1)/lcm;
    for(int i = cur + 1; i < cnt; i++)
    {
        dfs(i,lcm,id+1);
    }
}
int main()
{
    while(~scanf("%d%d", &n, &m))
    {
        cnt = 0;
        for(int i = 0; i < m; ++i)
        {
            int x;
            scanf("%d", &x);
            if(x!=0) a[cnt++]=x; 		//注意除数不能为零
        }
        ans = 0;
        for(int i = 0; i < cnt; ++i)
        {
            dfs(i,a[i],1);
        }
        cout << ans << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值