题意:
找一个集合中所有数的小于n的倍数的不重复的个数
思路:
很模板的容斥原理,其实最快的方法是筛出每个数的最小质因子,去重再dfs,不过数据很小随便了,这里放一下容斥原理的两个dfs模板,都是O(n*2^n)的,但dfs实际上常数小,加上剪枝,甚至快个1~2s都可能
第一种dfs(限制次数型的)
void dfs(int pos,int num,int res)
{
if(res==0){
if(i&1)
sum+=num;
else sum-=num;
return;
}
if(pos==数组个数)return;
if(p[pos]*num<60)dfs(pos+1,num*p[pos],res-1);//选
dfs(pos+1,num,res);//不选
return;
}
for(i=1;i<=limit;++i)
dfs(1,1,i);
第二种是枚举起点位置直接扫整个数组(这个剪枝方便,推荐这个
void dfs(int cur, long long lcm, int id)//id表示选第几个
{
lcm = a[cur]/gcd(a[cur],lcm)*lcm;
if(lcm>n-1)return;
if(id&1)
ans += (n-1)/lcm;
else ans -= (n-1)/lcm;
for(int i = cur + 1; i < cnt; i++)
{
dfs(i,lcm,id+1);
}
}
//枚举起点
for(i=0;i<cnt;++i)
dfs(i,a[i],1);
题解:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
int n, m, cnt;
long long ans, a[20];
long long gcd(long long a, long long b)
{
return b == 0 ? a : gcd(b,a%b);
}
//cur表示当前的数
//lcm表示最小公倍数
//id表示选了几个数,奇数则加,偶数则减
void dfs(int cur, long long lcm, int id)
{
lcm = a[cur]/gcd(a[cur],lcm)*lcm;
if(id&1)
ans += (n-1)/lcm;
else ans -= (n-1)/lcm;
for(int i = cur + 1; i < cnt; i++)
{
dfs(i,lcm,id+1);
}
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
cnt = 0;
for(int i = 0; i < m; ++i)
{
int x;
scanf("%d", &x);
if(x!=0) a[cnt++]=x; //注意除数不能为零
}
ans = 0;
for(int i = 0; i < cnt; ++i)
{
dfs(i,a[i],1);
}
cout << ans << endl;
}
return 0;
}