聚类&相似性度量

本文介绍了聚类的基本概念和两种主要算法:层次聚类与K均值聚类。聚类是无监督学习的一部分,依赖于样本间的相似度或距离。常见的相似性度量包括闵科夫斯基距离、马氏距离、相关系数和夹角余弦。层次聚类分为聚合和分裂两种,而K均值聚类易受初始类心选择影响,通常需要多次运行选取最佳结果。选择合适的聚类算法和相似性度量对于数据挖掘和模式识别至关重要。
摘要由CSDN通过智能技术生成

聚类属于无监督学习,目的是通过得到的类来发现数据的特点或者对数据进行处理。在数据挖掘和模式识别领域有广泛的应用。层次聚类和k均值聚类是最常用的两种聚类算法。

聚类需要根据样本特征的相似度或者距离来作为是否归属于某一类的依据,也就是相似的样本归为一类,不相似的样本不归为一类。

度量样本特征的相似度或者距离有多种方式:

  1. 闵科夫斯基距离:

          a、当p=1时,称为曼哈顿距离:

          b、当p=2时,称为欧式距离:

               c、当p=∞时,称为切比雪夫距离:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值