聚类属于无监督学习,目的是通过得到的类来发现数据的特点或者对数据进行处理。在数据挖掘和模式识别领域有广泛的应用。层次聚类和k均值聚类是最常用的两种聚类算法。
聚类需要根据样本特征的相似度或者距离来作为是否归属于某一类的依据,也就是相似的样本归为一类,不相似的样本不归为一类。
度量样本特征的相似度或者距离有多种方式:
- 闵科夫斯基距离: a、当p=1时,称为曼哈顿距离: b、当p=2时,称为欧式距离:
c、当p=∞时,称为切比雪夫距离:
聚类属于无监督学习,目的是通过得到的类来发现数据的特点或者对数据进行处理。在数据挖掘和模式识别领域有广泛的应用。层次聚类和k均值聚类是最常用的两种聚类算法。
聚类需要根据样本特征的相似度或者距离来作为是否归属于某一类的依据,也就是相似的样本归为一类,不相似的样本不归为一类。
度量样本特征的相似度或者距离有多种方式:
c、当p=∞时,称为切比雪夫距离: