(二叉树)高度平衡二叉树的判定

本文介绍了一种判断二叉树是否为高度平衡的方法。高度平衡的二叉树定义为每个节点的左右子树高度差的绝对值不超过1。文章详细解析了递归算法的实现过程,包括获取树高度和比较高度差。

题目描述

给定一个二叉树,判断它是否是高度平衡的二叉树。

本题中,一棵高度平衡二叉树定义为:

一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过1。

题目分析

由题意可知,高度平衡二叉树是指树上每个结点的左右两个子树的高度差的绝对值都不超过1。那么就可以采取以下思路:首先递归每个结点,然后对每个结点而言,得出其左右子树的高度,比较二者高度差绝对值是否超过1,如果没有超过1,说明当前结点是符合要求的,那么就递归其左右子树分别进行高度差判断;如果超过1了,说明当前结点不符合要求,那么整棵树也就不符合要求,直接返回false。
具体实现代码如下:

bool isBalanced(TreeNode* root) {
        
        if(!root)return true;
        
        int dif=getTheHigh(root->left)-getTheHigh(root->right);   //计算高度差
        
        if(dif>=-1&&dif<=1)  //高度差绝对值小于1
            return isBalanced(root->left)&&isBalanced(root->right);  //递归其左右子树
        
        return false;   //高度差绝对值大于1,不符合要求
        
    }
    int getTheHigh(TreeNode* root)  // 计算结点高度
    {
        if(!root)return 0;  //空结点高度为0
        
        return max(getTheHigh(root->left),getTheHigh(root->right))+1;  //返回其左右子树高度中的较大值 再加1
    }
### 三级标题:平衡二叉树的判断算法 平衡二叉树是指任意节点的左右子树高度差不超过 1 的二叉树。判断一个二叉树是否为平衡二叉树,需要递归计算每个节点的高度,并检查其左右子树的高度差是否满足条件。 以下是一个基于递归实现的 C 语言算法,用于判断二叉树是否为平衡二叉树: ```c #include <stdio.h> #include <stdlib.h> #include <math.h> // 定义二叉树节点结构 struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; // 计算二叉树高度 int TreeDepth(struct TreeNode* root) { if (root == NULL) { return 0; } int leftDepth = TreeDepth(root->left); int rightDepth = TreeDepth(root->right); return (leftDepth > rightDepth) ? (leftDepth + 1) : (rightDepth + 1); } // 判断是否为平衡二叉树 int isBalanced(struct TreeNode* root) { if (root == NULL) { return 1; // 空树是平衡的 } int leftDepth = TreeDepth(root->left); int rightDepth = TreeDepth(root->right); int gap = abs(leftDepth - rightDepth); if (gap > 1) { return 0; // 高度差超过1,不平衡 } return isBalanced(root->left) && isBalanced(root->right); // 递归检查子树 } ``` 该算法通过递归方式计算每个节点的左右子树高度,并判断其高度差是否小于等于 1。如果所有节点均满足条件,则该二叉树平衡二叉树 [^4]。 ### 三级标题:优化思路 上述算法在计算每个节点的高度时重复计算了多次子树高度,导致时间复杂度为 $O(n^2)$。可以通过在递归过程中同时返回树的高度和是否平衡的状态,将时间复杂度优化至 $O(n)$。 以下是一个优化版本的 C 语言实现: ```c // 定义结构体用于返回高度和是否平衡的状态 typedef struct { int isBalanced; int height; } BalanceStatusWithHeight; // 递归检查平衡状态并计算高度 BalanceStatusWithHeight checkBalance(struct TreeNode* root) { BalanceStatusWithHeight result; if (root == NULL) { result.isBalanced = 1; result.height = 0; return result; } BalanceStatusWithHeight leftResult = checkBalance(root->left); BalanceStatusWithHeight rightResult = checkBalance(root->right); result.height = (leftResult.height > rightResult.height ? leftResult.height : rightResult.height) + 1; result.isBalanced = (abs(leftResult.height - rightResult.height) <= 1) && leftResult.isBalanced && rightResult.isBalanced; return result; } // 主函数调用 int isBalancedOptimized(struct TreeNode* root) { BalanceStatusWithHeight result = checkBalance(root); return result.isBalanced; } ``` 该实现通过结构体 `BalanceStatusWithHeight` 同时返回节点是否平衡以及其高度,避免了重复计算,从而提高了效率 [^4]。 --- ### 三级标题:相关问题
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值