【下载】1200页CV经典《计算机视觉:算法与应用》第二版开放下载

Facebook研究科学家RichardSzeliski的《计算机视觉:算法与应用》第二版完成并提供PDF下载。新书调整了章节结构,增加了机器学习、深度学习等内容,并涵盖了最新的技术、文献和应用。旨在为初学者提供更全面的计算机视觉学习基础,同时适合高年级本科生和研究生阅读。每章末尾包含实践项目建议和未解决问题,鼓励读者探索与实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(给机器学习算法与Python学习加星标,提升AI技能)

本文整理自机器之心

提到计算机视觉领域的入门书,不少人会推荐 Facebook 研究科学家 Richard Szeliski 的《计算机视觉:算法与应用》。这本书的英文版于 2010 年出版,2011 年被翻译成中文在国内面世,成为很多人学习计算机视觉的入门教材。

这本书探索了用于分析和解释图像的各种常用技术,描述了具有一定挑战性的视觉应用方面的成功实例,兼顾专业的医学成像和图像编辑与拼接之类有趣的大众应用。在这本书中,作者从科学的角度介绍了基本的视觉问题,将成像过程的物理模型公式化,然后在此基础上生成对场景的逼真描述,他还运用统计模型来分析和运用严格的工程方法来解决这些问题。

作为一本被广泛采用的教材,《计算机视觉:算法与应用》非常受初学者欢迎,有人称赞其「为计算机视觉技术的初学者(本科生)提供了广泛的标准计算机视觉问题的坚实基础」。

为了弥补这一缺憾,最近,作者 Richard Szeliski 在自己的个人主页上宣布,《计算机视觉:算法与应用》第二版已经基本完成,并发布了新书的 PDF 版本,向读者征集意见。

新书下载方式

后台回复关键词

20201007

即可下载

第二版的《计算机视觉:算法与应用》也是 14 个章节,分别为:

  1. 引言;

  2. 成像;

  3. 图像处理;

  4. 模型拟合与优化;

  5. 深度学习;

  6. 识别;

  7. 特征检测与匹配;

  8. 图像对齐与拼接;

  9. 运动估计;

  10. 计算摄影学;

  11. 由运动到结构与 SLAM;

  12. 深度估计;

  13. 3D 重建;

  14. 基于图像的渲染;

可以看出,与第一版相比,第二版发生了很大的变化,其中最显著的变化包括:

  • 机器学习、深度学习和深度神经网络出现在第五章,因为它们在视觉算法中扮演的角色与前两章介绍的经典图像处理、图 / 概率模型、能量最小化方法一样重要。

  • 「识别」从第 14 章提前到了第 6 章,因为端到端深度学习系统不再需要开发特征检测、匹配、分割等构建模块,而大多数选修视觉课程的同学可能主要是对图像识别感兴趣,所以把这章提前有利于他们构建自己的项目。

除此之外,该书还增加了一些当前最新的技术、文献和应用,如手机计算摄影学和自主导航技术。

在之前的教学过程中,作者发现让学生实现一些小项目非常有用,有时这些项目甚至可以组成会议论文。因此,该书每一章末尾的练习都包含一些建议,针对一些期中小项目进行指导。此外,书中还包含一些尚未解决的开放性问题。

该书适用于计算机科学和电气工程高年级本科生和研究生。读者上手之前最好先学习一门图像处理或计算机图形学课程,这样就能少花点时间学习数学基础知识,多一点时间去学计算机视觉技术。为了让读者了解该领域的最新进展,作者尽量引用最新的研究。

新书下载方式

后台回复关键词

20201007

即可下载

推荐阅读
吴恩达Deeplearning.ai上新:生成对抗网络(GAN)专项课程

【进阶】深度学习训练过程可视化
没有什么内存问题,是一行Python代码解决不了的
【Pandas指南】初学者必备手册



├─1.计算机视觉简介、环境准备(python, ipython) │ computer vsion.pdf │ CS231 introduction.pdf │ ├─2.图像分类问题简介、kNN分类器、线性分类器、模型选择 │ 2. 图像分类简介、kNN线性分类器、模型选择.mp4 │ 2.初识图像分类.pdf │ ├─3.再谈线性分类器 │ 3.再谈线性分类器.mp4 │ 再谈线性分类器.pdf │ ├─4.反向传播算法和神经网络简介 │ .反向传播算法和神经网络简介.pdf │ 4. 反向传播算法和神经网络简介.mp4 │ ├─5.神经网络训练1 │ 5.-神经网络训练1.pdf │ 5.神经网络训练1.mp4 │ ├─6.神经网络训练2、卷积神经网络简介 │ 6.神经网络训练2.mp4 │ 神经网络训练2.pdf │ ├─7.卷积神经网络 │ 7.卷积神经网络.mp4 │ Lession7.pdf │ ├─8.图像OCR技术的回顾、进展及应用前景 │ 8.图像OCR技术的回顾、进展及应用前景.mp4 │ PhotoOCR_xbai.pdf │ └─9.物体定位检测 物体定位检测.pdf │ ├─10.卷积神经网络可视化 │ .卷积神经网络可视化.pdf │ 10.卷积神经网络可视化.mp4 │ ├─11.循环神经网络及其应用 │ 11.循环神经网络及其应用.mp4 │ 循环神经网络.pdf │ ├─12.卷积神经网络实战 │ 12.卷积神经网络训练实战.mp4 │ 卷积神经网络实战.pdf │ ├─13.常见深度学习框架介绍 │ 常见深度学习框架介绍.pdf │ ├─14.图像切割 │ 14.图像切割.mp4
评论 300
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值