4(第二类方法)直接回归计算深度

此类方法不匹配图像要素,直接根据输入图片学习深度。第一类方法是一个编码器,第二类方法是编码器加一个顶层网络。

网络框架

编码器 h h h 用卷积网络学习(类似前面), x = h ( I ) x=h(\mathbf{I}) x=h(I) 。顶层网络 g g g ,目标视点 v v v 。视差估计值 D ^ = g ( h ( I ) , v ) = ( g ∘ h ) ( I , v ) \hat{D}=g(h(\mathbf{I}), v)=(g \circ h)(\mathbf{I}, v) D^=g(h(I),v)=(gh)(I,v) 。一些方法将全连接的卷积网络作为顶层网络,另一些方法用上卷积层组成解码器。
通常,编码器阶段由卷积层组成,这些层捕获图像要素之间的局部交互,然后是多个完全连接的图层,这些层捕获全局交互。 某些图层之后是空洞卷积操作,以减少输出的分辨率。解码过程可以使用一系列完全连接的层或向上卷积层来完成。
具体方法待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值