python机器学习基础之plt.grid(网格线设置)

本文介绍了Python机器学习中matplotlib库的plt.grid()函数,用于生成网格线。详细讲解了参数b、which、axis、color、linestyle和linewidth的用法,帮助理解如何自定义网格线的显示、颜色、样式和宽度。
摘要由CSDN通过智能技术生成

1.生成网格代码:

In [15]: plt.gcf().set_facecolor(np.ones(3))

In [16]: plt.grid()

In [17]: plt.show()

如图:
在这里插入图片描述
参数详解:

matplotlin.pyplot.grid(b, which, axis, color, linestyle, linewidth, **kwargs)

b : 布尔值。就是是否显示网格线的意思。官网说如果b设置为None, 且kwargs长度为0,则切换网格状态。

which : 取值为’major’, ‘minor’, ‘both’。 默认为’major’。

axis : 取值为‘both’, ‘x’,‘y’。就是想绘制哪个方向的网格线。

color : 这就不用多说了,就是设置网格线的颜色。或者直接用c来代替color也可以。

**linestyle ?*也可以用ls来代替linestyle, 设置网格线的风格,是连续实线,虚线或者其它不同的线条。 | ‘-’ | ‘–’ | ‘-.’ | ‘:’ | ‘None’ | ‘’ | ‘’]

linewidth : 设置网格线的宽度

调参学习曲线是指在机器学习模型中,通过改变模型的超参数来寻找最佳的参数组合,以达到最好的性能。Python中有多种方法可以进行调参学习曲线的绘制和分析。 一种常用的方法是使用GridSearchCV或RandomizedSearchCV进行网格搜索或随机搜索。这些方法可以自动遍历给定的超参数组合,并通过交叉验证来评估每个组合的性能。然后,可以绘制学习曲线来可视化不同超参数值对模型性能的影响。 另一种方法是使用可视化库如matplotlib或seaborn来绘制学习曲线。学习曲线通常以超参数值为横坐标,性能指标(如准确率、F1分数等)为纵坐标。通过绘制不同超参数值下的性能曲线,可以找到最佳的超参数组合。 以下是一个示例代码,展示了如何使用GridSearchCV和matplotlib来绘制调参学习曲线: ```python from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC import matplotlib.pyplot as plt # 定义超参数范围 param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [0.1, 0.01, 0.001, 0.0001]} # 创建SVC模型 model = SVC() # 创建GridSearchCV对象 grid_search = GridSearchCV(model, param_grid, cv=5) # 拟合数据 grid_search.fit(X, y) # 获取不同超参数组合下的性能指标 results = grid_search.cv_results_ mean_scores = results['mean_test_score'] # 绘制学习曲线 plt.figure(figsize=(10, 6)) plt.plot(range(len(mean_scores)), mean_scores) plt.xticks(range(len(mean_scores)), param_grid['C']) plt.xlabel('C') plt.ylabel('Mean Test Score') plt.title('Learning Curve') plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值