矩阵分析内容总览

以下内容为哈尔滨工业大学研究生课程——矩阵分析(非数学系)的老师的讲的,是课程内容的最后十分钟,向严老师致敬。

哈尔滨工业大学 矩阵分析 全72讲 主讲严质彬:矩阵分析

第一章叫线性空间与线性映射,线性空间的抽象定义是一个集合,这个集合装备了加法和数域Ϝ上的数乘法,它们满足通常的运算规则,这里面我们讲了三个典型例子,一个是数域Ϝ上的标准向量空间,就是数组。第二个是最最最最重要的几何空间,我们所熟悉的几何空间,把有向线段看做元素,那么平行四边形法则,或者三角形法则当加法,同向或者反向伸缩叫数乘法,这构成一个向量空间。第三个例子是函数空间,就是把函数当元素,这个空间非常广泛,你可以限制一些函数,比如你可以只讨论多项式函数,只讨论连续函数,还有我们控制里面的分段连续函数,如果学过勒贝格积分的,平方可积的函数等等,这很多。总之,都是函数空间。然后呢?我们要研究抽象的线性相关性的理论,假定同学们在大一学过的关于线性方程组的理论是已知的,然后研究抽象的线性相关性,一个向量组线性相关、线性无关以及一个向量可以由另外一组向量做线性表示,那么,我们立即抽象的线性方程组的语言重新表达,然后建立了向量组的rank,向量组的秩和极大无关组的理论,在此基础上,我们引入了线性空间的维数、基的概念。然后就是子空间、子空间的交与并以及向量组张成的子空间,然后再往下就是线性映射与线性变换,那么线性映射与线性变换的核心概念、最重要的就是线性映射的矩阵表示,你在入口空间选一组基,出口空间选一组基,那么我们就可以通过坐标来计算线性映射,这是至关重要的一个概念。然后我们利用线性映射的矩阵表示的理论来研究矩阵的等价与相似。矩阵的等价相当于换基底,m行n列的矩阵可以看作是从F^n到F^m的一个线性映射,那么你在F^m中换一个基,F^n中换一个基,那么这个矩阵就等价于另一个矩阵。大家学完这门课,一定要装备上这个观念,我们说是几何的观念,一定要有。这也是我们花时间最多的地方,最值得讲的地方,有的同学可能正好倒过来了,他以为这个东西不值得讲。相似就是线性变换,正方形矩阵,出口基和入口基是一样的,所以就引入了矩阵的相似,这是我们第一章。
然后第二章是λ矩阵、Jordan标准型。那么多项式矩阵,我们来清点一下,这里面有一个叫单位模阵、多项式矩阵的初等变换、多项式矩阵的Smith标准型、行列式因子、不变因子、初等因子,然后呢我们建立了一个桥梁,一个bridge,就是矩阵的相似和多项式矩阵的等价:矩阵相似等价于它们对应的特征矩阵是等价的,这样我们就可以研究特征矩阵的Smith标准型把它化成一些特殊的样子,然后就设计出一个简单的、所谓的“标准型”,对应每一个初等因子,我们设计了一个Jordan块,就建立了Jordan标准型的理论,这一块大家每一部分都需要掌握。
第三章是关于內积——InnerProductor。內积是在这个抽象的线性空间里面,(我们只讨论实数和复数)定义了一个二元函数,就是你给两个向量,我可以算出一个数来。这个定义要非常清楚。它是对称的,对每一个分量是线性的、正定的。內积的这些性质在数学上非常好,只要知道两个向量组的交叉內积,它们可以拼成一个矩阵,叫Gram矩阵,我们就可以知道这两个向量张成的子空间中的任意两个向量的內积,而且可以写成矩阵形式,这是关于Gram矩阵的理论。有了內积,我们就可以以它为前提来建立几何概念,可以定义长度,在实(数)的时候还有夹角,而且它们符合勾股定理,这里面的一个核心推理就是Cauchy-Schwarz不等式。这里面的核心构架,在我们通常的几何空间里面,长度、夹角是本源,內积是导出概念,数学家为了将这里面的推理方法模拟到更复杂的空间里面去,我们做的工作是倒过来的。先有的內积,再导出的长度、夹角。这是典型的现代数学的抽象方法,你要好好领悟。这里面我们利用內积的概念建立Cauchy-Schwarz不等式、长度、夹角的概念,而且有勾股定理。有了勾股定理,我们就可以用几何方法来解决最佳逼近问题,就是用投影——投影定理,把一个向量向一个子空间投影,在这个子空间中找一个元素和这个向量距离最近,这个问题我们详细解答了,然后讨论了标准正交基,这不得了。如果不是标准正交基,我们可以利用Schmidt正交化把它化成标准正交基,标准正交基的好处是你沿着标准正交基展开的时候,求系数的方程是解耦的。所以标准正交基地位独特。既然标准正交基这么好,我们就要利用它把前一章讲的概念具体化,这里面有几个具体化是一个矩阵什么时候能用标准正交基相似于对角阵,由此我们引入了正规矩阵的概念,当然这前面还有酉矩阵和正交矩阵,就是标准正交基所对应的基矩阵,而且它本身作为线性变换还可以刻画,保持长度、夹角,作为正规矩阵的一个特例,重点讲了Hermite矩阵,Hermite矩阵可以用酉矩阵化成对角线,它的对角线上一定是实数,所以我们建立了关于正定矩阵的概念,它大于0。然后由Hermite矩阵的概念我们建立了矩阵的奇异值分解,奇异值分解就是利用标准正交基,相当于我们前面讨论的矩阵等价问题用标准正交基来考虑。还有前面忘了说的Schmidt正交化它的矩阵版本,就相当于矩阵的正交三角分解。
最后一章算是选讲,比较杂。我们讲了向量与矩阵的范数,有了向量与矩阵的范数,最重要的事情就是可以定义极限,我们可以定义矩阵序列的极限,可以定义矩阵值函数的微分、导数、积分、连续等等。矩阵微积分是我们务必要掌握的一个常识性的工具。我们利用矩阵的微积分研究了这么重要的问题,重点研究了e^At,就是我们大家研究控制的人的看家本领,你们不要辜负我哦!

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值