题目描述
你的任务是计算 a的b次方对 1337 取模,a 是一个正整数,b 是一个非常大的正整数且会以数组形式给出。
示例一:
输入:a = 2, b = [3]
输出:8
示例二:
输入:a = 2, b = [1,0]
输出:1024
示例三:
输入:a = 1, b = [4,3,3,8,5,2]
输出:1
示例四:
输入:a = 2147483647, b = [2,0,0]
输出:1198
前置知识:
1.快速幂算法
2.(a⋅b)modm=[(amodm)⋅(bmodm)]modm
思路:
我们从前往后依次看数组
举个例子:
代码:
class Solution {
int mod = 1337;
public int superPow(int a, int[] b) {
a = a%mod;
int res = pow(a,b[0]);
for(int i = 1;i<b.length;i++){
res = pow(res,10)*pow(a,b[i])%mod;
}
return res;
}
int pow(int a,int b){
int res = 1;
for (;b!=0;b/=2){
if (b%2!=0)
res = res * a % mod;
a = a * a % mod;
}
return res;
}
}
法二:倒序
class Solution {
int mod = 1337;
public int superPow(int a, int[] b) {
int res = 1;
a = a%mod;
for(int i = b.length-1;i>=0;i--){
res = res*pow(a,b[i])%mod;
a = pow(a,10);
}
return res;
}
int pow(int a,int b){
int res = 1;
for (;b!=0;b/=2){
if (b%2!=0)
res = res * a % mod;
a = a * a % mod;
}
return res;
}
}