特殊毕达哥拉斯三元组

本文探讨了满足a + b + c = 1000的唯一毕达哥拉斯三元组,其中a, b, c是自然数且a < b < c。通过数学分析找到该三元组,并计算其乘积abc。" 133194900,20036661,使用WebRTC与owt构建实时音视频通信,"['WebRTC', '实时音视频', 'owt']
摘要由CSDN通过智能技术生成

毕达哥拉斯三元组是三个自然数a < b < c组成的集合,并满足

a^2 + b^2 = c^2
例如,3^2 + 4^2 = 9 + 16 = 25 = 5^2。

有且只有一个毕达哥拉斯三元组满足 a + b + c = 1000。求这个三元组的乘积abc。

package EULER9;

/**
 * Created by ROC on 2016/7/6.
 * 毕达哥拉斯三元组是三个自然数a < b < c组成的集合,并满足
 * a^2 + b^2 = c^2
 * 例如,3^2 + 4^2 = 9 + 16 = 25 = 5^2。
 * 有且只有一个毕达哥拉斯三元组满足 a + b + c = 1000。求这个三元组的乘积abc。
 * 将平方和式代入和式求出a=1000*(500-b)/(1000-b),a和b在公式里是对称的,所以也有b=1000*(500-a)/(1000-a)
 * 遍历1-499
 */
public class EULER9 {
    public static void main(String[] args){
        int j;
        for (int i = 1;i<500;i++){
            if ((1000-i)%(500-i)==0){
                int k = (1000-i)/(500-i);
                if (1000%k==0){
                    System.out.println("i:"+i+",k:"+k);
                    j=1000/k;
         
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值