毕达哥拉斯三元组是三个自然数a < b < c组成的集合,并满足
a^ + b^ = c^
例如,3^ + 4^ = 9 + 16 = 25 = 5^。
有且只有一个毕达哥拉斯三元组满足 a + b + c = 1000。
求这个三元组的乘积abc。
思路: 满足毕达哥拉斯定理,可以把它想象成为一个直角三角形的三条边,a是小的直角边,b是大的直角边,c是斜边。
- b如果等于a,那么c就是无理数了,相加不可能等于1000,所以b不能等于a。
- 下面的循环要满足直角三角形的几个条件, 1:直角边要小于斜边,2:两边之和大于第三边,3:两边之差小于第三边。如果查找到就直接返回。
public static int bida(int sum) {
//三条边分别用 a b c 表示
for(int a=1; a<=sum/4; a++) { //a不等于b,a是最小的边,则a最多占1/4
for(int b=a+1;b<=sum/2;b++) { //b最多占1/2(a=0时)
int c = sum -a-b;
if((a*a+b*b == c*c) & (a+b>c) &(c-a<b)){
return a*b*c;
}
}
}
return -1;
}
public static void main(String[] args) {
System.out.println(bida(1000));
}
-
line 6 如果b<c ,就可以保证 a<c。
-
根据大边对大角,小边对小角的原则。
C是最长的斜边,对应的角度是90°,所以b不超过1/2;
a不等于b,且a是最小的边,所以a不超过1/4.