正太分布

密度函数

X   N ( μ , σ 2 ) X ~ N(\mu,\sigma^2) X N(μ,σ2),其概率密度为

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , σ &gt; 0 , − ∞ &lt; x &lt; + ∞ f(x)=\frac1{\sqrt{2 \pi} \sigma}e^{- \frac{(x-\mu)^2}{2\sigma^2}},\text{$\sigma&gt;0$},\text{$-\infty&lt;x&lt;+\infty $} f(x)=2π σ1e2σ2(xμ)2,σ>0,−∞<x<+∞

期望

E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x = ∫ − ∞ + ∞ x ∗ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx=\int_{-\infty}^{+\infty}x*\frac1{\sqrt{2 \pi} \sigma}e^{- \frac{(x-\mu)^2}{2\sigma^2}}dx E(X)=+xf(x)dx=+x2π σ1e2σ2(xμ)2dx

x − μ σ = t ⇒ x = μ + σ t \frac{x-\mu}{\sigma}=t \Rightarrow x=\mu+\sigma t σxμ=tx=μ+σt

所以:
E ( X ) = ∫ − ∞ + ∞ x ∗ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x = 1 2 π ∫ − ∞ + ∞ ( μ + σ t ) e − t 2 2 d t = u 1 2 π ∫ − ∞ + ∞ e − t 2 2 d t + σ 2 π ∫ − ∞ + ∞ t e − t 2 2 d t = μ \begin{aligned} E(X) &amp;= \int_{-\infty}^{+\infty}x*\frac1{\sqrt{2 \pi} \sigma}e^{- \frac{(x-\mu)^2}{2\sigma^2}}dx \\ &amp;= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty}(\mu + \sigma t)e^{-\frac{t^2}{2}}dt \\ &amp;= u \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}dt + \frac{\sigma}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t e^{-\frac{t^2}{2}}dt \\ &amp;= \mu \end{aligned} E(X)=+x2π σ1e2σ2(xμ)2dx=2π 1+(μ+σt)e2t2dt=u2π 1+e2t2dt+2π σ+te2t2dt=μ

方差

D ( x ) = ∫ − ∞ + ∞ ( x − μ ) 2 f ( x ) d x = ∫ − ∞ + ∞ ( x − μ ) 2 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x \begin{aligned} D(x) &amp;=\int_{-\infty}^{+\infty}(x-\mu)^2 f(x) dx \\ &amp;= \int_{-\infty}^{+\infty}(x-\mu)^2 \frac1{\sqrt{2 \pi} \sigma}e^{- \frac{(x-\mu)^2}{2\sigma^2}} dx \end{aligned} D(x)=+(xμ)2f(x)dx=+(xμ)22π σ1e2σ2(xμ)2dx

x − μ σ = t ⇒ x = μ + σ t \frac{x-\mu}{\sigma}=t \Rightarrow x=\mu+\sigma t σxμ=tx=μ+σt

D ( x ) = σ 2 2 π ∫ − ∞ + ∞ t 2 e − t 2 2 d t = σ 2 2 π ( − t e − t 2 2 ∣ − ∞ + ∞ + 1 2 π ∫ − ∞ + ∞ e − t 2 2 d t ) = 0 + σ 2 2 π 2 π = σ 2 \begin{aligned} D(x) &amp;= \frac{{\sigma}^2}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} t^2e^{ - \frac{t^2}{2}} dt \\&amp; =\frac{{\sigma}^2}{\sqrt{2 \pi}} \left( -te^{- \frac{t^2}{2}} |_{-\infty} ^{+\infty} + \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}dt\right) \\ &amp;= 0 + \frac{\sigma^2}{\sqrt{2 \pi}}\sqrt{2 \pi} \\ &amp;= \sigma^2 \end{aligned} D(x)=2π σ2+t2e2t2dt=2π σ2(te2t2++2π 1+e2t2dt)=0+2π σ22π =σ2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值