4 卷积的拉普拉斯变换

卷积的拉普拉斯变换

系统输入的拉普拉斯变换 X ( t ) X(t) X(t) 乘以传递函数 H ( s ) H(s) H(s) 等于系统输出的拉普拉斯变换 Y ( s ) Y(s) Y(s)
在这里插入图片描述

Laplace transform

X ( s ) = L [ X ( t ) ] = ∫ 0 ∞ X ( t ) e − s t d t X(s) = L[X(t)]=\int_{0}^{\infty} X(t) e^{-st} dt X(s)=L[X(t)]=0X(t)estdt

Convolution

x ( t ) ∗ g ( t ) = ∫ 0 τ x ( τ ) g ( t − τ ) d τ x(t) * g(t) = \int_0^{\tau} x(\tau) g(t-\tau) d \tau x(t)g(t)=0τx(τ)g(tτ)dτ

证明: L [ x ( t ) ∗ g ( t ) ] = X ( s ) G ( s ) L[x(t) * g(t)]=X(s)G(s) L[x(t)g(t)]=X(s)G(s)

L [ x ( t ) ∗ g ( t ) ] = ∫ 0 ∞ ∫ 0 t x ( τ ) g ( t − τ ) d τ    e − s t d t = ∫ 0 ∞ ∫ τ ∞ x ( τ ) g ( t − τ )    e − s t d t    d τ 令 : t − τ = u t = u + τ d t = d u + d τ = d u t ∈ [ τ , ∞ ) ⇒ u = t − τ ∈ [ 0 , ∞ ) = ∫ 0 ∞ ∫ 0 ∞ x ( τ ) g ( u ) e − s ( u + τ ) d u    d τ = ∫ 0 ∞ x ( τ ) e − s τ d τ ∫ 0 ∞ g ( u ) e − s u d u = X ( s ) G ( s ) \begin{aligned} L[x(t)*g(t)] &=\int_{0}^{\infty} \int_0^{t} x(\tau) g(t-\tau) d \tau \; e^{-st} dt \\ &=\int_{0}^{\infty} \int_{\tau}^{\infty} x(\tau) g(t-\tau) \; e^{-st} dt \;d \tau \\ & 令: t-\tau = u \quad t=u+\tau \quad dt=du+d\tau=du \\ &t\in[\tau,\infty) \Rightarrow u=t-\tau \in [0,\infty) \\ &=\int_0^{\infty} \int_0^{\infty} x(\tau)g(u) e^{-s(u+\tau)}du\;d\tau \\ &=\int_0^{\infty}x(\tau)e^{-s\tau}d\tau \int_0^{\infty}g(u)e^{-su}du\\ &=X(s)G(s) \end{aligned} L[x(t)g(t)]=00tx(τ)g(tτ)dτestdt=0τx(τ)g(tτ)estdtdτ:tτ=ut=u+τdt=du+dτ=dut[τ,)u=tτ[0,)=00x(τ)g(u)es(u+τ)dudτ=0x(τ)esτdτ0g(u)esudu=X(s)G(s)

在这里插入图片描述
结论:
L ( x ( t ) ∗ g ( t ) ) = L [ X ( t ) ] L ( G ( t ) ) = X ( s ) G ( s ) L(x(t)*g(t))=L[X(t)]L(G(t))=X(s)G(s) L(x(t)g(t))=L[X(t)]L(G(t))=X(s)G(s)

原视频:
https://www.bilibili.com/video/av26446618

  • 4
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积定理是拉普拉斯变换的重要性质之一,它表明在时域进行卷积运算,相当于在频域进行乘积运算。下面是时域卷积定理的证明过程: 假设存在两个函数 f(t) 和 g(t),它们的卷积为 h(t) = f(t) * g(t)。我们可以对这两个函数分别进行拉普拉斯变换,得到 F(s) 和 G(s)。 首先,我们定义拉普拉斯变换的定义如下: F(s) = L{f(t)} = ∫[0,∞] e^(-st)f(t)dt G(s) = L{g(t)} = ∫[0,∞] e^(-st)g(t)dt 根据卷积的定义,h(t) = f(t) * g(t) 可以表示为: h(t) = ∫[0,t] f(τ)g(t-τ)dτ 接下来,我们对 h(t) 进行拉普拉斯变换,得到 H(s): H(s) = L{h(t)} = ∫[0,∞] e^(-st)h(t)dt = ∫[0,∞] e^(-st)[∫[0,t] f(τ)g(t-τ)dτ]dt 我们可以交换积分次序,将内层的积分移到外层进行计算: H(s) = ∫[0,∞] [∫[0,t] e^(-st)f(τ)g(t-τ)dτ]dt 接下来,我们对内层的积分进行变换: ∫[0,t] e^(-st)f(τ)g(t-τ)dτ = ∫[0,t] e^(-st)f(τ)g(t-τ)d(t-τ) 我们可以通过变量替换,将积分的上限 t 变为 τ: ∫[0,t] e^(-st)f(τ)g(t-τ)d(t-τ) = ∫[0,t] e^(-s(t-τ))f(τ)g(τ)dτ 再次交换积分的次序,将内层的积分移到外层进行计算: ∫[0,t] e^(-s(t-τ))f(τ)g(τ)dτ = ∫[0,t] f(τ)e^(-s(t-τ))g(τ)dτ 我们可以将这个结果与 G(s) 进行比较: ∫[0,t] f(τ)e^(-s(t-τ))g(τ)dτ = G(s) 因此,H(s) 可以表示为: H(s) = ∫[0,∞] [∫[0,t] e^(-st)f(τ)g(t-τ)d(t-τ)]dt = ∫[0,∞] G(s)dt 上述结果表明,时域卷积运算的拉普拉斯变换等于频域乘积运算的拉普拉斯变换。这就是时域卷积定理的证明过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值