Tensorflow学习: AlexNet代码(slim版)

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a model definition for AlexNet.
This work was first described in:
  ImageNet Classification with Deep Convolutional Neural Networks
  Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton
and later refined in:
  One weird trick for parallelizing convolutional neural networks
  Alex Krizhevsky, 2014
Here we provide the implementation proposed in "One weird trick" and not
"ImageNet Classification", as per the paper, the LRN layers have been removed.
注意: LRN层已经被省略掉,因为效果有与没有差别不大,大家的经验所得。
Usage(用法):
  with slim.arg_scope(alexnet.alexnet_v2_arg_scope()):
    outputs, end_points = alexnet.alexnet_v2(inputs)
@@alexnet_v2
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

slim = tf.contrib.slim
# 创立lambda公式,即输入参数stddev返回一个参数为stddev的截断的正态分布值给trunc_normal。
trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)

# 这里是slim版,比较简洁并且容易检查错误
def alexnet_v2_arg_scope(weight_decay=0.0005):
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu, # relu是AlexNet的一大亮点,取代了之前的softmax。
                      biases_initializer=tf.constant_initializer(0.1),
                      weights_regularizer=slim.l2_regularizer(weight_decay)):
    with slim.arg_scope([slim.conv2d], padding='SAME'): #一般卷积的padding模式为SAME
      with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc: # pool的padding模式为VALID
        return arg_sc


def alexnet_v2(inputs,
               num_classes=1000, #最后分类为1000类
               is_training=True,
               dropout_keep_prob=0.5,
               spatial_squeeze=True, # 参数标志是否对输出进行squeeze操作(去除维度数为1的维度,比如5*3*1转为5*3)
               scope='alexnet_v2'):
  """AlexNet version 2.
  Described in: http://arxiv.org/pdf/1404.5997v2.pdf
  Parameters from:
  github.com/akrizhevsky/cuda-convnet2/blob/master/layers/
  layers-imagenet-1gpu.cfg
  Note: All the fully_connected layers have been transformed to conv2d layers.
        To use in classification mode, resize input to 224x224. To use in fully
        convolutional mode, set spatial_squeeze to false.
        The LRN layers have been removed and change the initializers from
        random_normal_initializer to xavier_initializer. 
          |-->这个要注意,因为用xavier_initializer初始化,经验证明会提升效果
  Args:
    inputs: a tensor of size [batch_size, height, width, channels].
    num_classes: number of predicted classes.
    is_training: whether or not the model is being trained.
    dropout_keep_prob: the probability that activations are kept in the dropout
      layers during training.
    spatial_squeeze: whether or not should squeeze the spatial dimensions of the
      outputs. Useful to remove unnecessary dimensions for classification.
      |--> 一般指的是维数为1的维度
    scope: Optional scope for the variables.
  Returns:
    the last op containing the log predictions and end_points dict.
  """
  with tf.variable_scope(scope, 'alexnet_v2', [inputs]) as sc:
    end_points_collection = sc.name + '_end_points'
    # 此处的 sc.name = ‘alexnet_v2’
    # Collect outputs for conv2d, fully_connected and max_pool2d.
    with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d],
                        outputs_collections=[end_points_collection]):
      net = slim.conv2d(inputs, 64, [11, 11], 4, padding='VALID',
                        scope='conv1')
      net = slim.max_pool2d(net, [3, 3], 2, scope='pool1')
      net = slim.conv2d(net, 192, [5, 5], scope='conv2')
      net = slim.max_pool2d(net, [3, 3], 2, scope='pool2')
      net = slim.conv2d(net, 384, [3, 3], scope='conv3')
      net = slim.conv2d(net, 384, [3, 3], scope='conv4')
      net = slim.conv2d(net, 256, [3, 3], scope='conv5')
      net = slim.max_pool2d(net, [3, 3], 2, scope='pool5')

      # Use conv2d instead of fully_connected layers.
      with slim.arg_scope([slim.conv2d],
                          weights_initializer=trunc_normal(0.005),
                          biases_initializer=tf.constant_initializer(0.1)):
        net = slim.conv2d(net, 4096, [5, 5], padding='VALID',
                          scope='fc6')
        net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                           scope='dropout6')
        net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
        net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                           scope='dropout7')
        net = slim.conv2d(net, num_classes, [1, 1],
                          activation_fn=None,
                          normalizer_fn=None,
                          biases_initializer=tf.zeros_initializer(),
                          scope='fc8')

      # Convert end_points_collection into a end_point dict.
      end_points = slim.utils.convert_collection_to_dict(end_points_collection)
      if spatial_squeeze:
        net = tf.squeeze(net, [1, 2], name='fc8/squeezed') #见后文详细注释
        end_points[sc.name + '/fc8'] = net
      return net, end_points
alexnet_v2.default_image_size = 224

这是关于squeeze的帮助文件

help(tf.squeeze)
Help on function squeeze in module tensorflow.python.ops.array_ops:

squeeze(input, axis=None, name=None, squeeze_dims=None)
    Removes dimensions of size 1 from the shape of a tensor.

    Given a tensor `input`, this operation returns a tensor of the same type with
    all dimensions of size 1 removed. If you don't want to remove all size 1
    dimensions, you can remove specific size 1 dimensions by specifying
    `axis`.

    For example:

    ```prettyprint
    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
    shape(squeeze(t)) ==> [2, 3]
    ```

    Or, to remove specific size 1 dimensions:

    ```prettyprint
    # 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
    shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
    ```

    Args:
      input: A `Tensor`. The `input` to squeeze.
      axis: An optional list of `ints`. Defaults to `[]`.
        If specified, only squeezes the dimensions listed. The dimension
        index starts at 0. It is an error to squeeze a dimension that is not 1.
      name: A name for the operation (optional).
      squeeze_dims: Deprecated keyword argument that is now axis.

    Returns:
      A `Tensor`. Has the same type as `input`.
      Contains the same data as `input`, but has one or more dimensions of
      size 1 removed.

    Raises:
      ValueError: When both `squeeze_dims` and `axis` are specified.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值