feature map大小计算方法

 

(1)边长的计算公式是: 
output_h =(originalSize_h+padding*2-kernelSize_h)/stride +1

输入图片大小为200×200,依次经过一层卷积(kernel size 5×5,padding 1,stride 2),pooling(kernel size 3×3,padding 0,stride 1),又一层卷积(kernel size 3×3,padding 1,stride 1)之后,输出特征图大小为:

(200-5+2*1)/2+1 为99.5,取99

(99-3)/1+1 为97

(97-3+2*1)/1+1 为97

研究过网络的话看到stride为1的时候,当kernel为 3 padding为1或者kernel为5 padding为2 一看就是卷积前后尺寸不变(卷积向下取整,池化向上取整)。

 

(2)如果是反卷积(deconvolution)

输入:2x2, 卷积核:4x4, 滑动步长:3, 输出:7x7

公式:2x4-(4-3)x(2-1)=8-1=7

        output_w= input_w*kernerl_size - (kernel_size - stride)*(input_w - 1)

或者:  (2 - 1) * 3 + 4 = 7

         output = (input_w - 1) * stride + kernel_size

图像的deconvolution过程如下,

 

(参考文章:http://blog.csdn.net/fate_fjh/article/details/52882134)

 

### YOLOv7 中多尺度特征图大小 在 YOLOv7 设计中,为了提高目标检测性能特别是对于不同尺度的目标,采用了多尺度特征提取的方法。具体来说,在骨干网络的不同阶段会生成多种分辨率的特征图,并通过特定机制进行融合。 通常情况下,假设输入图像尺寸为 \(W \times H\): - **高分辨率路径**:产生较大尺寸的特征图,大约是原图的 1/8 或者更高比例,用于捕捉细粒度的空间信息以及较小的对象。 - **中等分辨率路径**:一般对应于原始图片宽高的 1/16 左右的比例,平衡了计算成本与表达能力之间的关系,适合大多数常见规模的目标识别任务[^1]。 - **低分辨率路径**:此部分负责处理更大范围内的场景理解问题,其输出特征映射可能缩小至输入的一半甚至更低(比如 1/32),有助于发现远处的大面积物体或背景模式。 这些不同级别的特征会被进一步加工并通过跳跃连接等方式结合起来,最终服务于三个主要预测头,分别针对大中小三种类型的候选框做出响应。因此,虽然具体的数值取决于所使用的预训练权重文件及其配置参数设定,但上述提到的比例大致反映了YOLOv7内部各层特征图相对应的实际物理空间覆盖程度。 ```python input_size = (640, 640) # 输入图像尺寸为例 high_res_feature_map = tuple(x // 8 for x in input_size) # 高分辨率特征图大小约为(80, 80) mid_res_feature_map = tuple(x // 16 for x in input_size) # 中等分辨率特征图大小约为(40, 40) low_res_feature_map = tuple(x // 32 for x in input_size) # 低分辨率特征图大小约为(20, 20) print(f"High resolution feature map size: {high_res_feature_map}") print(f"Mid resolution feature map size: {mid_res_feature_map}") print(f"Low resolution feature map size: {low_res_feature_map}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nkszjx2

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值