基于高光谱遥感常见分类数据的 相似度度量
针对数据例如:Pines、 Salinas、Tea Farms、XiongAn、HongHu、LongKou等,这类数据中相同地物中,由于光照、阴影等因素的影响,同种地物的光谱相似度有一定的差异性。因此我们考虑用一些距离来评价光谱之间的距离,这类距离简单罗列下面几种:
以下距离本身有一定的特例,但可以通过编码的方式将原有数据进行空间转换。当然这方面的方法就不介绍了
1、谷本距离
该距离主要用于计算符号度量或布尔值的个体间的相似度,我们可以将高光谱数据进行编码后,将该类别中出现最多的元素作为原始特征进行距离计算。
其值介于[0, 1]之间,如果两个用户关联的物品完全相同,交集等于并集,值为1;如果没有任何关联,交集为空,值为0。
2、欧式距离
在HSI中,两个相似成分之间的欧式距离代表两个向量中每个真实值的差异性。作为最简单的距离计算,为考虑同种地物中不同相似成分之间的方向、光照等信息。即在计算欧式距离,仅仅是简单的距离计算,一些由于光照、作物成熟度、阴影等因素影响的同种地物之间的差异性会完全暴漏出来,而在进行分类的过程中会增加一定的特征多样性,不利于分类和回归模型的构建。
3、余弦距离
余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。对于HSI来说,编码向量和原始向量的余弦距离代表,不同相似的成分谱信息之间的方向差异性。若余弦值接近1,则表示两条光谱完全重合,即表示两个成分谱越相似。与欧式距离不同,余弦距离没有考虑两个向量之间的绝对距离,而是考虑了两个方向向量之间余弦夹角的真实距离。
余弦距离的取值范围是[0,2]。
4、光谱角距离
把图像中的每个像元的光谱视为一个高维向量,通过计算两向量间的夹角来度量光谱间的相似性,夹角越小,两光谱越相似,属于同类地物的可能性越大,因而可根据光谱角的大小来辨别未知数据的类别。分类时,通过计算未知数据与已知数据间的光谱角,并把未知数据的类别归为最小光谱角对应的类别中。