系统数学描述的两种基本类型
对于系统的描述可用如下方块图表示:
系统的数学描述一般有两种基本类型.一种是系统的外部描述,即输入-输出描述.这种描述将系统看成是一个黑箱子,只是反映输入输出的因果关系,而不去表征系统内部的结构和内部变量,对于一个线性定常系统,一般用一个n阶微分方程及对应的传递函数描述.系统的另外一种描述就是内部描述,即状态空间描述.这种描述是基于系统内部结构分析的一类数学模型,通常由两个数学方程组成.一个是反映内部变量 x=[x1,x2,...,xn]T x = [ x 1 , x 2 , . . . , x n ] T 和输入变量 u=[u1,u2,...,up]T u = [ u 1 , u 2 , . . . , u p ] T 间因果关系的数学表达式,常具有微分方程和差分方程(离散系统)的形式,称为状态方程;一个是表征系统内部变量 x=[x1,x2,...,xn]T x = [ x 1 , x 2 , . . . , x n ] T 及输入变量 u=[u1,u2,..,up]T u = [ u 1 , u 2 , . . , u p ] T 和输出变量 y=[y1,y2,...,