综述:
3种迁移学习策略:迁移模型的结构调整策略、参数调整策略,从迁移模型中提取特征的策略
5
种迁移学习模式:
简单模式:
深度卷积神经网络
(deep convolution neural network,DCNN)
模式
、
混合模式
、 特征组合分类模式、
复杂模式:多分类器融合模式和二次迁移模式
。
存在的问题并展望未来研究方向:
-
难以选择高效的迁移学习算法(用自动迁移学习解决迁移学习算法的选择问题。 )
- 迁移模型的修改和超参数的设置缺乏理论 指导。
- 罕见疾病图像分类困难。
罕见疾病病理图 像数据样本很少,
如何通过迁移学习提高罕见疾病图像分类也是一个问题。
一方面通过对抗迁移学习来生成符合要求的罕 见疾病病理图像样本,增加样本数量
模型举例:
卷积神经网络 (convolution neural network,CNN) 可以直接采用原 始图像作为输入,
自动学习和提取特征
,
避免传统算 法的特征定义和参数设置的复杂过程
对 抗 式 迁 移 学 习
对抗生成网络,
用来生成皮肤癌图 像样本,
通过增加样本的方法提高皮肤癌分类准确 性
绝大多数研究采用基于模型的迁移学习,并且主 要采用深度卷积神经网络( deep convolution neural network,DCNN)作为迁移模型。
迁移学习策略
结构调整策略
结构调整策略指修改迁移模型结构的方式,根 据需要删除某些层或增加某些层,包括卷积层、完全 连接(full connection,FC)层和其他层。 其他层属于 卷积层或 FC 层,例如池化层属于卷积层,而 softmax 层属于 FC 层。
参数调整策略
参数调整指通过使用目标域数据对迁移模型进 行再训练以调整模型参数,
目的是获得更好的分类
效果
。
调整卷积层参数可以获得更 准确的特征,
调整
FC
层参数能提高分类性能
。
从迁移模型中提取特征的策略
从迁移模型中提取特征的策略指从模型的某个 或某些层提取特征,可以从卷积层提取特征,也可以 从 FC 层提取特征
迁移学习模式
DCNN 模式
DCNN
模式就是用同一个
DCNN
完成图像特征 提取和分类。
DCNN 能够通过卷积层提取医学图像的深层特征
,
同时还可以通过全连接层完成图像的分类任务
,
混合模式
混合模式由
DCNN
和分类器组成
,
前者进行特 征提取,
后者用于分类
特征组合分类模式
使用多种方法分别提取同 一个图像数据集的特征,得到的多种特征再通过某 些方法进行融合。 该模式中,特征来源有两种情况, 一种是图像特征由不同 DCNN 分别提取;另一种是 由 DCNN 和传统方法分别提取。
多分类器融合模式
多分类器融合模式由多个分类器组成,其核心 是得到多个分类结果再进一步整合得到最终分类结 果,分为包含 DCNN 模式和包含混合模式两种
二次迁移模式