CNN Based Spatio-temporal Feature Extraction for Face Anti-spoofing

CNN Based Spatio-temporal Feature Extraction for Face Anti-spoofing

标签: anti-spoofing


论文来源: 2017 2nd International Conference on Image, Vision and Computing

摘要

当前很多方法都只考虑了单帧图像,也就是只考虑了在空间上的特征信息,而忽略了时间轴上的信息,所以本文提出了一种CNN(空间信息)+LBPTOP(时间信息)的方法进行特征提取。选用了CASIA和Replay-Attack数据库做实验。

引言

先前的方法都是使用CNN[1]的方法,并且还使用了人脸识别把人脸扣出来,其实其忽略了背景信息,其背景信息也很重要(因为人会相对背景产生动作)。本文的方法不需要对图片预处理(主要指的是进行人脸切割)。除此之外还罗列了其他的几种常见的方法:motion based,texture based,3Dshape based。
这里面提到了一种cnn+lstm可以看一下[1]lstm可以有时间信息

背景知识

提出的结构是CNN+LBP-TOP,其中CNN提取空间信息,LBP-TOP提取时间信息,CNN架构使用的是16,LBP-TOP使用[18]提出的VLBP方法,使用VLBP进行计算并产生相应直方图最为最终特征。CNN图片不贴了,就是普通的卷积加池化。下面的图是LBP-TOP的。

在这里插入图片描述

方法

视频数据处理->由于数据集中各个视频帧数不同,所以统一规定选取前60帧,然后都resize成227*227(可以作为参考)
把一个视频(60帧)喂入CNN计算特征,取CNN的第3、4、5层特征(每层有每层的特点)
然后把每层的特征喂入LBP-TOP计算直方图作为特征(有小技巧,参考原文Figure 3)?(这点不太明白,如何作为特征的,以后可以看LBP-TOP[18])
最后放入SVM训练
分类器:SVM
注意:这个喂入CNN的是视频即[60,227,227,3],如果实现的话要注意,而不是传统的图片[batch_size,w,h,c]

在这里插入图片描述

实验

数据集使用的是CASIA[21]和REPLAY-ATTACK[17],评测标准使用HTER和EER。注意在CASIA中没有交叉验证集合(即validation或者dev集合),所以自行从train中分出来。下图是实验结果。

在这里插入图片描述

在这里插入图片描述

下面这个图片是看一下不同CNN层的特征对结果的影响,是自己和自己的实验做对比。

在这里插入图片描述

可以看出还是把所有层都用上效果较好,并且层次越高效果也越好,说明CNN越往高层,就能产生更能代表该图片的特征信息,但不是全部,底层也含有一些高层不具备的信息,所以使用所有层次最后效果更好。

收获

1、了解了对于活体不仅仅可以做图片方面工作,还可以放到视频方面考虑时间轴信息
2、了解了LBP-TOP用处参考[18]
3、对CASIA以及REPLAY数据集中视频数据如何处理

金句:In the volume, the author samples the surrounding points and then with the value of center pixel thresholding every point in the neighborhood.

参考文献重点摘录可作为以后读

LSTM和CNN结合的
[1] z. Xu, S. Li, and W. Deng, “Learning temporal features using LSTMCNN architecture for face anti-spoofing,” Proc. - 3rd IAPR Asian
Con! Pattern Recognition, ACPR 2015, pp. 141-145,2016.

一些其他特征方法
[3]-[12]参考原文Introduction第三段(Traditional methods)
LBP-TOP
[18]G. Zhao and P. Matti, “Dynamic Texture Recognition Using Local
Binary Patterns with an Application to Facial Expressions,” Pattern
Anal. Mach. Intel!. Trans., vol. 29, no. 6, pp. 915-928, 2007

(本文采用的)
[15]T. De Freitas Pereira, A. Anjos, 1. M. De Martino, and S. Marcel,
“LBP-TOP based countermeasure against face spoofing attacks,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intel!. Lect.
Notes Bioinformatics), vol. 7728 LNCS, no. PART I, pp. 121-132,
2013.

CNN权威模型
[16] A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “lmageNet
Classification with Deep Convolutional Neural Networks,” Adv.
Neurallnj Process. Syst., pp. 1-9,2012

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
时空动作检测(spatio-temporal action detection)是一项计算机视觉任务,旨在从视频片段中准确地检测和识别出发生的动作。与传统的动作识别任务相比,时空动作检测旨在通过不仅仅检测动作在空间上的出现,还要捕捉动作在时间上的变化。 时空动作检测往往涉及以下几个主要步骤: 1. 帧级特征提取:首先,利用现有的特征提取技术,从每个视频帧中提取稳定而有信息量的特征,以捕捉空间信息。 2. 时间建模:接下来,通过对连续帧之间的变化进行建模,来捕捉动作的时间相关性和动态信息。这可以通过各种技术,如光流,差分图和循环网络等来实现。 3. 动作检测:在获得空间和时间特征后,利用学习算法(如深度神经网络)来进行动作检测。这通常通过将时空特征输入到分类器,然后根据预先训练的模型推断动作类别和位置。 4. 时空定位:最后,定位动作在视频中的准确位置。这可以通过在时间上进行滑窗检测,并使用非极大值抑制来抑制重叠检测结果来实现。 时空动作检测在很多领域具有广泛应用,比如视频监控、智能交通、运动分析和人机交互等。通过准确地检测和识别动作,我们可以实现更精确的行为理解和动作预测,从而为许多实际应用带来便捷和效益。然而,时空动作检测仍然存在一些挑战,如动作遮挡、背景干扰和不同尺度的动作等问题,所以该领域的研究仍在不断发展和进步。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值