Adversarial Network Embedding论文解读

本文提出了一种对抗网络表示(ANE)框架,利用对抗学习原则增强网络表示的鲁棒性。ANE由结构保留部分和对抗学习部分组成,前者通过inductive DeepWalk保持网络结构,后者通过对抗学习生成鲁棒的表示。该框架适用于处理具有噪声的网络数据,通过在表示学习中引入对抗学习,提高了表示的稳定性和质量。
摘要由CSDN通过智能技术生成

Adversarial Network Embedding

摘要

现有的方法可以有效地将结构属性编码成低维向量表示,但是,他们大多缺少加强表示鲁棒性的额外约束。本篇文章提出一个对抗网络表示(ANE)框架,利用对抗学习原则来规划表示学习。框架由两部分组成,一个结构保留部分和一个对抗学习部分,前者旨获取网络结构属性,后者致力于学习鲁棒性表示,使结构保留部分生成的网络表示服从先验分布。

介绍

网络表示是一个具有挑战性的研究难题。因为图结构数据的高维、稀疏和非线性的原因。尽管现有的方法在结构保留方面很有效,但是缺乏鲁棒性约束,当处理具有噪声的网络数据时,这些无监督学习网络表示往往表现不好。因此,在表示学习过程中考虑一些不稳定因素是至关重要的。无监督中加强表示学习鲁棒性的一个著名的技术是降噪自编码器。它通过从输入中剔除噪音来获得稳定且鲁棒的表示,这也是降噪的标准。近期,许多生成对抗模型被提出学习鲁棒且稳定的表示,但是,这些模型中没有一个用来处理图数据。本文提出的ANE,除了优化保留结构的目标,还有给不稳定数据建模的对抗学习过程。ANE的结构保留部分,我们提出一个适合于框架的inductive DeepWalk,它保留了随机游走搜索节点的邻接信息,并且优化相似目标函数,但是用一个参数函数生成表示向量。对抗学习部分由生成器和 辨别器组成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值