ProGAN: Network Embedding via Proximity Generative Adversarial Network 论文笔记

ProGAN是一种利用生成对抗网络来学习网络中节点表示的方法,旨在保留不同节点间的邻近性。它包括生成器、判别器和编码器,目的是在低维空间中保持节点的真实和潜在相似性。通过对抗损失和编码损失函数,ProGAN能有效挖掘网络的相似性结构。
摘要由CSDN通过智能技术生成

ProGAN: Network Embedding via Proximity Generative
Adversarial Network
使用相似性生成对抗网络的网络嵌入

在这里插入图片描述

动机:

发现不同节点之间的邻近性是学习良好的节点表示的关键。网络中的边很稀疏,不能很好地披露不同节点的相似性,且大多数算法不能完全利用网络拓扑结构和属性信息。因此作者提出ProGAN可以生成邻近性。通过保留真实的相似性和生成的相似性,生成节点表示。

算法:

G = {V,W ,X} ,其中V表示节点集、W表示邻接矩阵、X表示属性矩阵。不同节点间的相似性被描述成三元组< v i , v j , v k v_i,v_j,v_k vi,vj,vk>,其中 v i v_i vi是参考节点, v j v_j vj是与 v i v_i vi相似的正节点, v k v_k vk是与 v i v_i vi不相似的负节点。

原始空间的相似性满足:
sim ⁡ ( v i , v j ) > sim ⁡ ( v i , v k ) \operatorname{sim}\left(v_{i}, v_{j}\right)>\operatorname{sim}\left(v_{i}, v_{k}\right) sim(vi,vj)>sim(vi,vk)
在进行节点表示的时候,应保留不同节点间的相似性。E看作是原始节点的低维表示,相似性满足:
sim ⁡ ( E i . , E j . ) > sim ⁡ ( E i . , E k . ) \operatorname{sim}\left(E_{i} ., E_{j} .\right)>\operatorname{sim}\left(E_{i} ., E_{k} .\right) sim(Ei.,Ej.)>sim(Ei.,Ek.)

假设真实三元组分布(未知)为 P ( v i , v j , v k ) P\left(v_{i}, v_{j}, v_{k}\right) P(vi,vj,vk),ProGAN的任务为学习一个分布 Q ( v i , v j , v k ) Q\left(v_{i}, v_{j}, v_{k}\right) Q(vi,vj,vk)以逼近原始网络中的三元组分布。那么从Q中生成的三元组就应该逼近真实的相似性。

生成的三元组中的节点应该同样逼近真实节点,即生成的节点分布 Q ( v i ) Q\left(v_{i}\right) Q(vi)也近似真实的节点分布 P ( v i ) P\left(v_{i}\right) P(vi)

ProGAN共包含三个部分:生成器、判别器、编码器

生成器

生成三元组和节点。
生成器生成的节点 v ^ ∼ G ( z 1 , z 2 ) \hat{v} \sim G\left(z_{1}, z_{2}\right) v^G(z1,z2) z 1 , z 2 z_1,z_2 z1,z2是生成器的两个输入噪音。生成器的目标是:改变 z 1 , z 2 z_1,z_2 z1,z2控制两个生成节点的相似性。因此为了满足: sim ⁡ ( v ^ i , v ^ j ) > sim ⁡ ( v ^ i , v ^ k ) \operatorname{sim}\left(\hat{v}_{i}, \hat{v}_{j}\right)>\operatorname{sim}\left(\hat{v}_{i}, \hat{v}_{k}\right) sim(v^i,v^j)>sim(v^i,v^k),生成 ⟨ v ^ i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值