协方差与协方差矩阵

一、协方差

协方差用于衡量两个随机变量的联合变化程度
方差为协方差的一种特殊情况,即该变量与其自身之协方差。

若变量X的较大值主要与另一个变量Y的较大值相对应,而两者的较小值也相对应,则可称两变量倾向于表现出相似的行为,协方差为正。在相反的情况下,当一个变量的较大值主要对应于另一个变量的较小值时,则两变量倾向于表现出相反的行为,协方差为负。即协方差之正负号显示著变量的相关性。

协方差的定义

期望值分别为 E ( X ) = μ \displaystyle E(X)=\mu E(X)=μ E ( Y ) = ν E(Y)=\nu E(Y)=ν 的两个具有有限二阶矩的实数随机变量X 与Y 之间的协方差定义为: C o v ( X , Y ) = E ( ( X − μ ) ( Y − ν ) ) = E ( X Y ) − μ ν Cov(X,Y)=E((X-\mu)(Y-\nu))=E(XY)-\mu\nu Cov(X,Y)=E((Xμ)(Yν))=E(XY)μν

  1. 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
  2. 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X 与Y 是统计独立的,那么二者之间的协方差是0,这是因为 E ( X Y ) = E ( X ) E ( Y ) = μ ν E(XY)=E(X)E(Y)=\mu\nu E(XY)=E(X)E(Y)=μν
但是反过来并不成立,即如果 C o v ( X , Y ) Cov(X,Y) Cov(X,Y)为0,二者并不一定是统计独立的。

协方差的相关性η

η = cov ⁡ ( X , Y ) var ⁡ ( X ) ⋅ var ⁡ ( Y )   , {\displaystyle \eta ={\dfrac {\operatorname {cov} (X,Y)}{\sqrt {\operatorname {var} (X)\cdot \operatorname {var} (Y)}}}\ ,} η=var(X)var(Y) cov(X,Y) ,
更准确地说是线性相关性,其取值在[-1, 1]之间。

  1. η = 1时称为“完全线性相关”(相关性η = -1时称为“完全线性负相关”),此时将Yi对Xi作Y-X 散点图,将得到一组精确排列在直线上的点;相关性数值介于-1到1之间时,其绝对值越接近1表明线性相关性越好,作散点图得到的点的排布越接近一条直线。
  2. η = 0(因而协方差也为0)的两个随机变量又被称为是不相关的,或者更准确地说叫作**“线性无关”“线性不相关”,这仅仅表明X 与Y 两随机变量之间没有线性相关性,并非表示它们之间一定没有任何内在的(非线性)函数关系**。

二、协方差矩阵

假设 X {\displaystyle X} X是以 n {\displaystyle n} n个随机变量组成的列向量,
X = [ X 1 X 2 ⋮ X n ] {\displaystyle \mathbf {X} ={\begin{bmatrix}X_{1}\\X_{2}\\\vdots \\X_{n}\end{bmatrix}}} X=X1X2Xn

并且 μ i {\displaystyle \mu _{i}} μi X i {\displaystyle X_{i}} Xi的期望值,即, μ i = E ( X i ) {\displaystyle \mu _{i}=\mathrm {E} (X_{i})} μi=E(Xi)。协方差矩阵的第 ( i , j ) {\displaystyle (i,j)} (i,j)项(第 ( i , j ) {\displaystyle (i,j)} (i,j)项是一个协方差)被定义为如下形式:

Σ i j = c o v ( X i , X j ) = E [ ( X i − μ i ) ( X j − μ j ) ] {\displaystyle \Sigma _{ij}=\mathrm {cov} (X_{i},X_{j})=\mathrm {E} {\begin{bmatrix}(X_{i}-\mu _{i})(X_{j}-\mu _{j})\end{bmatrix}}} Σij=cov(Xi,Xj)=E[(Xiμi)(Xjμj)]

协方差矩阵为:
Σ = E [ ( X − E [ X ] ) ( X − E [ X ] ) T ] {\displaystyle \Sigma =\mathrm {E} \left[\left(\mathbf {X} -\mathrm {E} [\mathbf {X} ]\right)\left(\mathbf {X} -\mathrm {E} [\mathbf {X} ]\right)^{\rm {T}}\right]} Σ=E[(XE[X])(XE[X])T]

= [ E [ ( X 1 − μ 1 ) ( X 1 − μ 1 ) ] E [ ( X 1 − μ 1 ) ( X 2 − μ 2 ) ] ⋯ E [ ( X 1 − μ 1 ) ( X n − μ n ) ] E [ ( X 2 − μ 2 ) ( X 1 − μ 1 ) ] E [ ( X 2 − μ 2 ) ( X 2 − μ 2 ) ] ⋯ E [ ( X 2 − μ 2 ) ( X n − μ n ) ] ⋮ ⋮ ⋱ ⋮ E [ ( X n − μ n ) ( X 1 − μ 1 ) ] E [ ( X n − μ n ) ( X 2 − μ 2 ) ] ⋯ E [ ( X n − μ n ) ( X n − μ n ) ] ] {\displaystyle = {\begin{bmatrix} \mathrm {E} [(X_{1}-\mu _{1})(X_{1}-\mu _{1})]&\mathrm {E} [(X_{1}-\mu _{1})(X_{2}-\mu _{2})]&\cdots &\mathrm {E} [(X_{1}-\mu _{1})(X_{n}-\mu _{n})] \\\\\mathrm {E} [(X_{2}-\mu _{2})(X_{1}-\mu _{1})]&\mathrm {E} [(X_{2}-\mu _{2})(X_{2}-\mu _{2})]&\cdots &\mathrm {E} [(X_{2}-\mu _{2})(X_{n}-\mu _{n})] \\\\\vdots &\vdots &\ddots &\vdots \\\\\mathrm {E} [(X_{n}-\mu _{n})(X_{1}-\mu _{1})]&\mathrm {E} [(X_{n}-\mu _{n})(X_{2}-\mu _{2})]&\cdots &\mathrm {E} [(X_{n}-\mu _{n})(X_{n}-\mu _{n})] \end{bmatrix}}} =E[(X1μ1)(X1μ1)]E[(X2μ2)(X1μ1)]E[(Xnμn)(X1μ1)]E[(X1μ1)(X2μ2)]E[(X2μ2)(X2μ2)]E[(Xnμn)(X2μ2)]E[(X1μ1)(Xnμn)]E[(X2μ2)(Xnμn)]E[(Xnμn)(Xnμn)]
矩阵中的第 ( i , j ) {\displaystyle (i,j)} (i,j)个元素是 X i {\displaystyle X_{i}} Xi X j {\displaystyle X_{j}} Xj的协方差。这个概念是对于标量随机变量方差的一般化推广。

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值