1.概念
(1)均值:所有样本平均值。
公式:
(2)方差:各个样本与样本均值的差的平方和的均值。
用途:描述数据离散程度。
公式:
(3)标准差:方差开方即标准差。
公式:
(4)协方差:判断两个变量的同步程度,也就是判断A变量变化时B变量变化的相应程度。
协方差>0,A变量增大时B变量增大(二者负相关)。协方差=0,A变量和B变量线性无关。协方差<0,A变量增大时B变量减小(二者正相关)。
公式:【这个概念不重要,工作里用不大上】
(5)协方差矩阵:协方差矩阵中的每个元素是各个向量元素之间的协方差。
计算公式:
如n维随机变量XYZ的协方差矩阵为:
1)特征值:该特征重要程度
2)特征向量:该特征是什么
2.协方差矩阵的应用(PCA主成分分析)
以下:重点、常用、要记住
(理解如下,即理解了PCA主成分分析的原理)
在三维点云中,通过接口计算出协方差矩阵,协方差矩阵的特征向量,即是XYZ的方向。协方差矩阵的各特征向量的特征值,即是XYZ单位长度的比值。
如下情况:
通过协方差矩阵的特征向量和特征值,可以计算这块点云的朝向、哪个朝向是它的主方向向量、各方向上点云多少等信息。(该点云要经过滤波,变成是均匀的,否则会计算不准确)
工作中如可以通过协方差矩阵计算杆塔点云横担的朝向,或者是悬垂绝缘子的朝向。又或者是计算当前机器人手臂的方向等等等等。