题目描述
设有N堆沙子排成一排,其编号为1,2,3,…,N(N< =300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为1 3 5 2我们可以先合并1、2堆,代价为4,得到4 5 2又合并1,2堆,代价为9,得到9 2,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。
输入
第一行一个数N表示沙子的堆数N。 第二行N个数,表示每堆沙子的质量。 a[i]< =1000。
输出
合并的最小代价。
样例输入
4 1 3 5 2
样例输出
22
#include <bits/stdc++.h>
using namespace std;
int n;
int a[301];
int i;
int j;
int k;
int dp[301][301];
int w[301][301];
int main()
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(i=0;i<n;i++)
{
w[i][i]=a[i];
for(j=i+1;j<n;j++)
w[i][j]=w[i][j-1]+a[j];
}
for(int len=2;len<=n;len++)
for(i=0;i<=n-len;i++)
{
j=i+len-1;
dp[i][j]=dp[i][i]+dp[i+1][j]+w[i][j];
for(k=i+1;k<j;k++)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);
}
}
printf("%d",dp[0][n-1]);
return 0;
}