问题 A: 沙子的质量

题目描述

设有N堆沙子排成一排,其编号为1,2,3,…,N(N< =300)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为1 3 5 2我们可以先合并1、2堆,代价为4,得到4 5 2又合并1,2堆,代价为9,得到9 2,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。

输入

第一行一个数N表示沙子的堆数N。 第二行N个数,表示每堆沙子的质量。 a[i]< =1000。

输出

合并的最小代价。

样例输入

4
1 3 5 2

样例输出

22
#include <bits/stdc++.h>
using namespace std;

int n;
int a[301];
int i;
int j;
int k;
int dp[301][301];
int w[301][301];

int main()
{
	memset(dp,0,sizeof(dp));
	scanf("%d",&n);
	for(i=0;i<n;i++)
	{
		scanf("%d",&a[i]);
	}
	
	for(i=0;i<n;i++)
	{
		w[i][i]=a[i];
		for(j=i+1;j<n;j++)
			w[i][j]=w[i][j-1]+a[j];
	}
		
	for(int len=2;len<=n;len++)
		for(i=0;i<=n-len;i++)
		{
			j=i+len-1;
			dp[i][j]=dp[i][i]+dp[i+1][j]+w[i][j];
			for(k=i+1;k<j;k++)
			{
				dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);
			}
		}
	
	printf("%d",dp[0][n-1]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值