【LeetCode - 1101】彼此熟识的最早时间

1、题目描述

在这里插入图片描述

2、解题思路

  经典的并查集算法。

  初始时,有多少个人就有多少个朋友圈,每个圈子的领袖初始时都是每个人自己。

  find 方法:如果 A 所在圈子的领袖不是 A 本身,则继续找 leader[A] 的领袖,直到该圈子的领袖是它自己为止;

  union 方法:如果两个人所在圈子的领袖不是同一个人,则 leader[leaderA] = leaderB,同时圈子个数减一。

3、解题代码

class Solution {
    public int earliestAcq(int[][] logs, int N) {
        Arrays.sort(logs, Comparator.comparingInt(a -> a[0]));
        Friend f = new Friend(N);
        for (int[] log : logs) {
            f.union(log[1], log[2]);
            if (f.circles == 1) {
                return log[0];
            }
        }
        return -1;
    }

    class Friend {
        int n;
        int circles;
        int[] leader;

        Friend(int N) {
            n = N;
            circles = N;
            leader = new int[n];
            for (int i = 0; i < leader.length; i++) {
                leader[i] = i;
            }
        }

        int find(int A) {
            while (leader[A] != A) {
                A = leader[A];
            }
            return A;
        }

        void union(int A, int B) {
            int leaderA = find(A);
            int leaderB = find(B);
            if (leaderA != leaderB) {
                leader[leaderA] = leaderB;
                circles--;
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值