一、导学
1、比例的常见作用
(1)通过份数求数量
甲:乙=1:2 那么甲乙的人数总和一定是3的倍数
(2)得到倍数关系
不同的说法都可以转化为比例,比如甲是乙的两倍=2:1、甲是乙的4/3=4:3、甲比乙多25%=5:4
(3)通比
通过不变的量(和、差),统一不变的量,得到整体的关系
(4)正反比
商一定,成正比;积一定,成反比
(5)十字交叉法/线段法
也适合资料分析中的混合增长率
二、平均数
【把多出来的匀一匀,不用相加再相除】
方法:以一个数为基准,计算其他数与该数的差值,计算差值的平均数,再补到基准数中。
例: 83 97 79 89 92的平均数:以80为基准,差值分别为 3 17 -1 9 12,差值平均值为8,最终结果为80+8=88
十字交叉:已知混合平均和单独平均,求人数比例
三、工程问题
1.关系
工作总量一般不会明确给出,可以看成1
效率可以相加
2.赋值法
通过最小公倍数可以为工作效率或者工作总量赋值为份数
3.大合作思想
分步合作工程转换成大合作
2甲+2乙+2乙+2丙+2甲+2乙=1
甲+乙+丙=1/4
2乙+2丙=(2/3)*45%=3/10
四、浓度问题
1.概念
2.题型及方法
3.例题
(1)稀释公式
关键词:取出、倒入
(2)方程法:当溶质不变时,用乘法计算溶质列等式
(3)比例法:单溶液变化,用通比计算份数
看什么不变,就对谁做通比
(4)十字交叉法:双溶液混合,计算份数
五、经济问题
1.概念
2.基本关系
3.常用方法
4.赋值法
赋值法的延伸(乘积增长率和商的增长率):
5.例题
(1)设未知数,列方程
除了列方程,还可以通过11的倍数直接选B
(2)十字交叉法
(3)赋值法
(4)利润率
售价不变
单件利润×销量=单日利润
(5)最大利润
和一定,差小积大
(6)分段利润
(7)乘积增长率
不要被无关的数据干扰,利用总利润=销量×单件利润
??
六、行程问题
1.概念
在多次相遇情况下,只算迎面相遇
S初=S甲+S乙=V和*T
匀加速运动可以转化为匀速运动=(V初+V末)/2
2.常见题型和方法
七、排列组合/计数问题
1.计数原理
2.计数思维
八、概率问题
1.概念
计算:C52=(5×4)/(2×1)=10 分母是2的阶乘,分子是乘到2个数
条件概率中,总情况数为满足前提条件的情况数
情况太多,可以反面计算
有顺序的话用A