素数环问题(回溯法)(注:2018年吉林大学计算机学硕复试笔试题最后一题(40分))

输入正整数n,把整数1,2,3……n组成一个环,使得相邻两个整数之和均为素数。输出时从整数1开始逆时针排列。同一个环应恰好输出依次。

输入
一行,正整数n。

输出
把这个环从整数1开始逆时针排列。同一个环恰好输出一次。
每一个数之间用空格隔开。

输入:
6

输出:
1 4 3 2 5 6
1 6 5 2 3 4
2 3 4 1 6 5
2 5 6 1 4 3
3 2 5 6 1 4
3 4 1 6 5 2
4 1 6 5 2 3
4 3 2 5 6 1
5 2 3 4 1 6
5 6 1 4 3 2
6 1 4 3 2 5
6 5 2 3 4 1

思路:这道题本来就是递归搜索做出来的,回溯法只是一个学术的名字,其实现还是有递归实现的;
上代码;(2018年吉林大学计算机学硕复试笔试题最后一题中n的值仅为20,这个代码大家有需要记忆的时候仅需把n改为20即可)

#include<iostream>
#include<cmath>
using namespace std;
int n;
bool fun2(int * a,int c,int b)
{
	int m=0,j;
	for(j=0;j<b;j++)
	{
		if(a[j]==c)
		{
			m=1;
			break;
		}
	}
	if(m==1)
	{
		return false;
	}
	else
	{
		return true;
	}
}
bool fun1(int c,int d)
{
	int m=0,i;
	for(i=2;i<=sqrt(c+d);i++)
	{
		if((c+d)%i==0)
		{
			m=1;
			break;
		}
	}
	if(m==1)
	{
		return false;
	}
	else
	{
		return true;
	}
}
int fun(int * a,int b)
{
	int i;
	if(b==n)
	{
		if(fun1(a[b-1],a[0]))
		{
			for(i=0;i<b;i++)
			{
				cout<<a[i];
				if(i!=(b-1))
					cout<<' ';
			}
			cout<<endl;
		}
		return 0;
	}
	else
	{
		for(i=1;i<=n;i++)
		{
			if(fun2(a,i,b))
			{
				if(fun1(a[b-1],i))
				{
					a[b]=i;
					fun(a,++b);
					b--;
				}
			}
		}
		return 0;
	}
}
int main()
{
	int a[21]={0},i,cnt=0;
	cin>>n;
	for(i=1;i<=n;i++)
	{
		a[cnt]=i;
		fun(a,++cnt);
		cnt--;
	}
}
©️2020 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值