自制作数据上的pva faster rcnn 训练

本文介绍如何使用Faster R-CNN进行车辆检测的数据集准备及模型配置过程,包括数据集制作、类别设置等步骤。

一:数据集制作,参考我的上一篇文章http://blog.csdn.net/qq_29133371/article/details/54408165

数据集制作完成后将这三个文件夹复制至一个文件夹(命名为VOC2007)当中,再移动至$pva-faster-rcnn/data/VOCdevkit2007中,替换原来的VOC2007

二:训练阶段

类别设置:(有几类设置几类,我的这里只标记了1类车辆数据)

1)打开文件/models/pvanet/example_train384/train.prototxt

搜索:num_classes,有两处均改为2(背景和car);

搜索cls_score层,将num_out:21改为2;

搜索bbox_pred层,将num_out:84改为8.

2)修改lib/datasets/pascal_voc.py

self._classes = ('__background__', # always index 0
                              'car')(只有这一类)

3)修改lib/datasets/imdb.py

 
数据整理,在一行代码为
 boxes[:, 2] = widths[i] - oldx1 - 1
下加入代码:

 for b in range(len(boxes)):

      if boxes[b][2]< boxes[b][0]:

         boxes[b][0] = 0

4)修改完pascal_voc.py和imdb.py后进入lib/datasets目录下删除原来的pascal_voc.pyc和imdb.pyc文件,重新生成这两个文件,因为这两个文件是Python编译后的文件,系统会直接调用。

5)记得将dataset/cache文件删除掉,如果在训练自己数据集之前存在

完成!

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值