人工智能基础作业_UNIT 3

文章介绍了集成学习的概念,如何通过多个弱学习器构建强模型以提高稳定性和泛化能力。支持向量机作为重要的分类工具,利用核函数解决非线性问题,其中提到了线性、多项式和高斯核。文章还讨论了软间隔在防止过拟合中的作用,以及VC维作为评估模型复杂度的指标。生成式和判别式模型的对比中,强调了各自的优缺点。最后,澄清了分类、聚类以及KNN和K-means在判别式和生成式方法中的应用。
摘要由CSDN通过智能技术生成

集成学习

多个弱学习器构成一个更强大的模型,提高稳定性和泛化能力

支持向量机

将低维数据映射到高维空间,用来分类。但实际上往往因为高维空间计算复杂,经常用核函数代替。

软间隔

允许在存在一定错误的情况下,找到一个间隔面将它们分类,好处是有较强的泛化能力,不容易过拟合。

核函数

在低维空间中进行复杂的性线性映射,将原始的特征空间映射到高维,用来分类。大概包括三类:


线性核函数:
$k(\mathbf{x}_i,\mathbf{x}_j) = \mathbf{x}_i^\top \mathbf{x}_j$

多项式核函数:
$k(\mathbf{x}_i,\mathbf{x}_j) = (\gamma \mathbf{x}_i^\top \mathbf{x}_j + r)^d$

其中,$\gamma$ 是一个可调节的参数,$r$ 是一个常数偏移量,$d$ 是多项式的阶数。

高斯核函数
(也称为径向基函数(RBF)核函数):$k(\mathbf{x}_i,\mathbf{x}_j) = \exp(-\frac{|\mathbf{x}_i - \mathbf{x}_j|^2}{2\sigma^2})$

VC维

衡量机器学习模型能拟合的数据集大小的指标。vC维越大.越强的表现力.也容易过拟合。

生成式模型

训练数据部分缺失时,通过该模型可概率推断出来缺失数据,常用于图像处理。

判别式模型

.

直接学习输入特征和标签,预测映射关系,可以直接进行分类和回归。

生成式和判别式模型各有什么优缺点?

生:
优点是可以对数据进行建模、预测缺失数据。
缺点是当训练数据确实过少时,难以进行推广,有时候甚至会出现过拟合。
判:
优点是能够很好地处理复杂分类问题。
缺点是丢失一部分数据时,有可能拟合程度不够充分。

监督学习是判别式方法,无监督学习是生成式方法?

No,监督学习和无监督学习都可以使用判别式模型或生成式模型。判别式模型通常用于监督学习,而生成式模型通常用于无监督学习,但并不是绝对的。

分类是判别式方法,聚类是生成式方法?KNN,K-means分别是什么方法?

NO,分类和聚类都可以使用判别式模型或生成式模型。KNN是一种判别式方法,它通过找到最近的训练样本来对新数据进行分类。K-means是一种聚类算法,它试图将相似的数据分组到一起,使得每个组的数据点与其他组的数据点尽可能的不相似。 K-means是一种生成式方法,因为它通过建模数据的分布来对数据进行聚类。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值