- 博客(15)
- 收藏
- 关注
原创 人工智能基础作业12
但是还是不妨碍我说HBU666,课程不给退课,哥们超了6学分硬修,谁家大三满课?教学秘书的一句话给我整笑了:“你想退课为啥当初还选呢”,要不是之前好几次选课不中我会全选?修不够学分又是我的问题了呗,再退一步说,既然都不允许退课了,退课系统删了得了呗。附带本人大三下课表:开心得嘞。
2023-06-25 15:28:37 123
原创 人工智能基础作业_11
主要思想是:将RNN展开成多步的CNN,利用链式法则计算每一步的梯度,将梯度加起来,用于RNN参数的更新。它由两个主要的RNN组成,一个作为编码器,用于将输入序列转换为固定长度的向量表示,另一个作为解码器,用于将向量表示转换为输出序列。个人猜想在文本翻译和ai对话当中就有运用这个模型,编码器将输入序列变成向量,捕捉语义,再通过解码器解码成目标序列,关键点在于训练过后的输入数据和输出数据之间的序列关系。2、可以捕捉时间步的信息,建立序列的依赖关系 3、RNN将序列作为输入,元素之间是相关联的,CNN。
2023-05-31 15:11:18 148
原创 人工智能基础作业_10
5,池化层用的是最大池化操作;还有用了一个叫局部归一化的东西,简单理解就是在中途对激活值较大的数据进一步增强,提升区分度,个人理解有点贪心 的局部最优策略吧,只不过这里用的局部加强;也是CNN经典模型之一,在2014年提出的,跟Alexnet不一样,首先它有16或者19个卷积层,深度更“深”,其次它的卷积核较小 ,是3*3的,所以相对于Alexnet他的参数量和模型会大很多,从而训练时间肯定也会更长。在2012年提出,它的主要特点是 有5个卷积层 和三个 全连接层 交替,用ReLu函数来引入非线性;
2023-05-31 09:19:57 112
原创 人工智能基础作业_9
上图为原图执行Relu激活函数之后的效果图,在左上到右下这一条直线中1更多,白色也较为明显,这是因为卷积核里左上到右下全为1,原图的1不断被卷积核强化累积,使得图中显示出的“x”的某条直线更加明显,在这种情况下,识别为‘x’的概率当然也就更大。说来惭愧,一开始我以为是将池化后的矩阵进行激活,但是又想到激活好像改变不了图片大小,但是确实pooling和relu_map的尺寸大小又不一样,倒回去看源码发现对特征图的池化和激活这两个操作是分开进行的,他们的输入端都是feature_map。
2023-05-17 15:13:14 97
原创 人工智能基础作业_8
通过对输入数据的特征图进行主要特征抽取减小特征图的尺寸和参数数量,细致点说就是局部选最优,再把所有的局部凑到一块,思想类似贪心。卷积神经网络中较早的层次中提取的特征,通常包括简单的线条、角度、纹理等特征。在输入数据的周围填充一些特定的值(通常是0),使得输入数据的尺寸在进行卷积操作时能够得到保留。卷积神经网络中较后的层次中提取的特征,中级特征是一只眼睛或者一个鼻子,高级特征就是一张脸。步长的大小可以影响输出特征图的尺寸,步长越大,则输出特征图的尺寸越小。将输入数据的尺寸缩小,降采样是一样的。
2023-05-10 10:15:11 100
原创 人工智能基础作业7_后续
上一次作业的边缘检测中,我们发现检测非常不明显,几乎成一张灰色的图了,后来听老师讲解明白了。具体操作就是将显示图片的参数区间用vmin和vmax标准化到[0,1]区间就ok,如果不规定在这个区间的话,图片就会有众多的量化值,过度就会相对平滑,会导致看不清边界。就ok啦。
2023-05-06 16:07:17 57
原创 人工智能基础作业_7
不同的卷积核有不同的大小,参数,层数对应通道数。卷积核的不同权重可以有效突出需求特征值,卷积核的大小和步长也能影响最终的特征信息,卷积核越大,特征越泛化;举个例子,一张图片可以理解为红绿蓝在平面上的堆积,那对图片的卷积就可以分别由红绿蓝三条路进行卷积,最后再把得出的三个矩阵对应相加就可以了。在不同卷积核中不同位置有不同的权重,因为卷积核的确定,所以卷积核的特征会从局部映射到整体。不同的卷积核也被应用于不同的场景,比如面部识别,数字图像处理,物体识别等,猜测的话,京东和淘宝等的拍照识图也用的这种思想。
2023-05-05 21:07:00 187
原创 人工智能基础作业_UNIT6
Super Bright 的学校补课,周末直接没时间写,本来规律的作业周期被冲烂了,周二的作业拖到周五,真TheaterMissileDefense服了。学校啥都想让学生学,希望面面俱到,可是谁又会想到,浅尝辄止意味着庞大且平庸。
2023-04-28 15:56:08 96
原创 人工智能基础作业_UNIT4
对数据点需要找最近的簇,对簇需要求得对点距离的平均值,然后更新簇。把语言提取成一些矩阵和特殊值,用来判断不同语言的相似度,用来检索和分类用的,有可能查重网站利用的就是这种技术。KNN算法是监督式学习算法,用于分类和回归,K-means是无监督学习算法,用于聚类。将人脸图像投影到低维空间,提取出最有区分性的特征,再把测试人脸也投影,来测试人脸身份。不完全,他们都有迭代的E步和M步最大化期望,但是算法不一样,目标函数也不同。代码当然不是我写的,只是为了体会算法模型的实现,我还没有成长到这一步,呜呜。
2023-04-05 01:06:54 126
原创 人工智能基础作业_UNIT 3
KNN是一种判别式方法,它通过找到最近的训练样本来对新数据进行分类。K-means是一种聚类算法,它试图将相似的数据分组到一起,使得每个组的数据点与其他组的数据点尽可能的不相似。K-means是一种生成式方法,因为它通过建模数据的分布来对数据进行聚类。判别式模型通常用于监督学习,而生成式模型通常用于无监督学习,但并不是绝对的。允许在存在一定错误的情况下,找到一个间隔面将它们分类,好处是有较强的泛化能力,不容易过拟合。在低维空间中进行复杂的性线性映射,将原始的特征空间映射到高维,用来分类。
2023-03-28 19:49:18 203
原创 人工智能基础作业_UNIT2
通过改变样本权重并重复训练,AdaBoost可以根据每个弱分类器的表现为每个样本分配不同的权重,以便于下一轮训练时更好地关注分类错误的样本。信息增益是指在决策树的节点中,某个特征能够带来的熵减少量,即选择该特征进行划分后,样本集合的不确定性减少的程度。PAC 理论认为,通过在有限数量的样本上进行学习,算法可以在一定程度上保证错误率在可接受的范围内,同时样本数量越多,算法的错误率越小。是一种分类算法,用于寻找一个线性的投影方式,使得在低维空间中样本点之间的距离尽可能大,同一类样本的距离尽可能小。
2023-03-21 20:38:20 118
原创 【无标题】
*Transformer是一种用于处理序列数据的神经网络架构,由Google在2017年提出,用于解决自然语言处理中的长距离依赖问题。该模型不同于传统的循环神经网络(Recurrent Neural Networks,RNN)和卷积神经网络(Convolutional Neural Networks,CNN),而是使用了自注意力机制(self-attention mechanism)来处理序列数据。
2023-03-14 22:26:54 108 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人