本文的经典之处是为脑肿瘤分割引入了边界感知FCN共同学习边界和区域的任务。
本文的主要贡献:( 1 )首先将多任务 FCN 框架应用于多模态脑肿瘤(和子结构)分割 ; ( 2 )提出了一种无需后处理步骤以及联合学习预测肿瘤区域和肿瘤边界的感知 FCN; (3)在统计意义上证明所提出的网络提高了肿瘤边界分割的准确性;(4)在BRATS数据测试;本文方法在BRATS13上排名第一,并且具有良好的计算效率。本文模型的代码是基于keras和Theana上完成,但是好像并没有进行开源
我们提出一种新颖的,多任务的全卷积网络(FCN)架构,用于脑肿瘤的自动分割。该网络通过连接从多模MR图像提取的分层特征表示来提取多级上下文信息。通过在损失函数中直接加入边界信息,实现了分割性能的提高。该方法在BRATS13和BRATS15数据集上进行了评估,并与BRATS13测试集上的竞争方法进行比较。相比单任务的FCN和融合RCF的FCN都取得了较好的性能。该方法是最准确可用的,并且在测试时间具有相对较低的计算成本。
1 引言
目前对于脑肿瘤分割的普遍方法