Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation的解读

本文提出了一种边界感知的全卷积网络(FCN)架构,用于脑肿瘤的自动分割。该网络通过多任务学习同时预测肿瘤区域和边界,提高了分割性能,特别是在BRATS13和BRATS15数据集上表现优秀,无需后处理步骤,计算效率高。
摘要由CSDN通过智能技术生成

    本文的经典之处是为脑肿瘤分割引入了边界感知FCN共同学习边界和区域的任务。

    本文的主要贡献:( 1 )首先将多任务 FCN 框架应用于多模态脑肿瘤(和子结构)分割 ; 2 )提出了一种无需后处理步骤以及联合学习预测肿瘤区域和肿瘤边界的感知 FCN; (3)在统计意义上证明所提出的网络提高了肿瘤边界分割的准确性;(4)在BRATS数据测试;本文方法在BRATS13上排名第一,并且具有良好的计算效率。

本文模型的代码是基于kerasTheana上完成,但是好像并没有进行开源

       我们提出一种新颖的,多任务的全卷积网络(FCN)架构,用于脑肿瘤的自动分割。该网络通过连接从多模MR图像提取的分层特征表示来提取多级上下文信息。通过在损失函数中直接加入边界信息,实现了分割性能的提高。该方法在BRATS13BRATS15数据集上进行了评估,并与BRATS13测试集上的竞争方法进行比较。相比单任务的FCN和融合RCFFCN都取得了较好的性能。该方法是最准确可用的,并且在测试时间具有相对较低的计算成本。

 

1 引言

     目前对于脑肿瘤分割的普遍方法࿱

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值