HOG特征的应用总结

方向梯度直方图Histogram of Oriented Gradient, HOG特征
优缺点描述
优点
首先,由于HOG是在图像的局部方格单元上操作,所以它对图像几何的和光学的形变都能保持很好的不变性,这两种形变只会出现在更大的空间领域上。其次,在粗的空域抽样、精细的方向抽样以及较强的局部光学归一化等条件下,只要行人大体上能够保持直立的姿势,可以容许行人有一些细微的肢体动作,这些细微的动作可以被忽略而不影响检测效果。因此HOG特征是特别适合于做图像中的人体检测的。

行人检测方面:由于HOG特征能够反映人体的轮廓,并且它对图像中的人体的亮度和颜色变化不敏感,在其检测方面有优良的性能。
车辆检测方面:由于HOG特征对光照的不敏感、即使存在部分遮挡也可检测出来,在各种复杂的交通路和停车场所,有很好的鲁棒性。
跟踪方面:HOG特征在跟踪具有明显边沿轮廓的运动目标
HOG表示的是边缘(梯度)的结构特征,因此可以描述局部的形状信息;
位置和方向空间的量化一定程度上可以抑制平移和旋转带来的影响;
采取在局部区域归一化直方图,可以部分抵消光照变化带来的影响。
由于一定程度忽略了光照颜色对图像造成的影响,使得图像所需要的表征数据的维度降低了。
而且由于它这种分块分单元的处理方法,也使得图像局部像素点之间的关系可以很好得到的表征。

缺点
描述子生成过程冗长,导致速度慢,实时性差;
很难处理遮挡问题。
由于梯度的性质,该描述子对噪点相当敏感

主要应用
行人检测、车辆检测、跟踪方面 、 静态图像、视频的行人检测
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值