截至2017年12月只有在安装了CUDA toolkit 8.0和CuDNN v6的64位Ubuntu下可以通过pip安装支持GPU的TensorFlow,对于其他的Linux版本和其他的CUDA/CuDNN版本的用户,需要通过源码进行安装来支持GPU。
选择Tensorflow版本
安装Tensorflow前先确认自己需要的版本,确定使用的版本后再往下进行。
由于需要使用bazel编译Tensorflow源码,需要CUDA和CUDNN实现GPU加速,所以确认Tensorflow版本后,还要确认bazel、CUDA、CUDNN版本。
部分版本配合结果如下
linux:
比如此时需要在python27下使用bazel安装tensorflow_gpu-1.12.0,相应的我们选择bazel版本为0.15.0,CUDA版本为9.1,CUDNN版本为7.1。
安装bazel 0.15.0
CUDA 和CUDNN安装详见CUDA安装、CUDNN安装
在安装 bazel 时,要先安装 JDK8(按照官方网站安装就没问题:https://docs.bazel.build/versions/master/install.html)
- 安装JDK 8
sudo apt-get install openjdk-8-jdk
- 下载bazel 0.15.0
地址:bazel
将下载好的文件复制到HOME目录下,赋予权限:
chmod +x bazel-0.15.0-installer-linux-x86_64.sh
- 安装
./bazel-0.15.0-installer-linux-x86_64.sh --user
完成后会在HOME目录下生成一个bin文件夹
- 查看bazel 版本
bazel version
从上图可以看到,bazel版本是0.15.0。
编译安装Tensorflow
- 下载Tensorflow
git clone https://github.com/tensorflow/tensorflow
- 进入Ten