数理统计与数据分析第三版习题 第3章 第43-53题

题目43

U 1 U_1 U1 U 2 U_2 U2 [ 0 , 1 ] [0,1] [0,1]上相互独立的均匀随机变量计算并画出 S = U 1 + U 2 S=U_1+U_2 S=U1+U2的密度函数

解题思路

f x ( x ) = { 1 0 ≤ x ≤ 1 0 其 它 f_x(x)=\left\{ \begin{aligned} 1 \quad 0\leq x \leq 1 \\ 0 \qquad \quad 其它 \end{aligned} \right. fx(x)={10x10

f y ( y ) = { 1 0 ≤ y ≤ 1 0 其 它 f_y(y)=\left\{ \begin{aligned} 1 \quad 0\leq y \leq 1 \\ 0 \qquad \quad 其它 \end{aligned} \right. fy(y)={10y10
卷积公式
f z ( z ) = ∫ − ∞ + ∞ f ( u , z − u ) d u = ∫ − ∞ + ∞ f x ( u ) f y ( z − u ) d u f_z(z)=\int_{-\infty}^{+\infty}f(u,z-u)du=\int_{-\infty}^{+\infty}f_x(u)f_y(z-u)du fz(z)=+f(u,zu)du=+fx(u)fy(zu)du
计算时只要计算被积函数非零的部分
0 ≤ u ≤ 1 且 0 ≤ z − u ≤ 1 0\leq u \leq 1 且 0 \leq z-u \leq 1 0u10zu1 可以以写成 0 ≤ u ≤ 1 且 z − 1 ≤ u ≤ z 0 \leq u \leq 1 且 z-1 \leq u \leq z 0u1z1uz
0 ≤ z ≤ 1 0\leq z \leq 1 0z1 z − 1 z-1 z1最小可以为-1但根据 0 ≤ u 0\leq u 0u这个条件所以 u u u的下限取0,上限取z
1 ≤ z ≤ 2 1\leq z \leq 2 1z2 z − 1 z-1 z1最小可以0满足u必须大于0的要求,所以此时 u u u的下限为 z − 1 z-1 z1而上限 z z z最大可以取2不满足 u ≤ 1 u\leq 1 u1的要求,取上限为1

f z ( z ) = ∫ − ∞ + ∞ f x ( u ) f y ( z − u ) d u = { ∫ 0 z 1 d u = z , 0 ≤ z ≤ 1 ∫ z − 1 1 1 d u = 2 − z , 1 ≤ z ≤ 2 0 , 其 它 f_z(z)=\int_{-\infty}^{+\infty}f_x(u)f_y(z-u)du=\left\{ \begin{aligned} &\int_0^z 1 du =z,0\leq z\leq 1\\ &\int_{z-1}^{1}1du = 2-z,1\leq z\leq 2\\ &0,其它 \end{aligned} \right. fz(z)=+fx(u)fy(zu)du=0z1du=z,0z1z111du=2z,1z20,

题目44

假设 X X X Y Y Y是独立的离散的随机变量,并且取值0,1,2时的概率都是 1 3 \frac13 31,计算 X + Y X+Y X+Y的频率函数

解题思路

根据卷积定义
p Z ( z ) = ∑ x = − ∞ ∞ p X ( x ) p Y ( z − x ) p_Z(z)=\sum\limits_{x=-\infty}^{\infty}p_X(x)p_Y(z-x) pZ(z)=x=pX(x)pY(zx)
本题主要是要确定x求合的范围
根据题意 Z = X + Y Z=X+Y Z=X+Y,则 0 ≤ z ≤ 4 0\leq z \leq 4 0z4并且要满足 0 ≤ x ≤ 2 0\leq x \leq2 0x2
z ≤ 2 , 0 ≤ x ≤ z z\leq 2,0\leq x \leq z z2,0xz
z ≥ 2 , z − 2 ≤ x ≤ 2 z\geq 2,z-2\leq x \leq2 z2,z2x2
所以,当 z ≤ 2 z\leq 2 z2
p Z ( z ) = ∑ x = 0 z p X ( x ) p Y ( z − x ) = ∑ x = 0 z 1 3 ⋅ 1 3 = ( z + 1 ) ⋅ 1 9 = 1 9 z + 1 9 \begin{aligned} p_Z(z)&=\sum\limits_{x=0}^{z}p_X(x)p_Y(z-x)\\ &=\sum\limits_{x=0}^{z}\frac13\cdot\frac13\\ &=(z+1)\cdot\frac19\\ &=\frac19z+\frac19 \end{aligned} pZ(z)=x=0zpX(x)pY(zx)=x=0z3131=(z+1)91=91z+91

z ≥ 2 z\geq 2 z2
p Z ( z ) = ∑ x = z − 2 2 p X ( x ) p Y ( z − x ) = ∑ x = z − 2 2 1 3 ⋅ 1 3 上 限 减 去 下 限 再 加 1 就 是 总 的 相 加 的 次 数 = ( 2 − ( z − 2 ) + 1 ) ⋅ 1 9 = 1 9 ( 5 − z ) \begin{aligned} p_Z(z)&=\sum\limits_{x=z-2}^{2}p_X(x)p_Y(z-x)\\ &=\sum\limits_{x=z-2}^{2}\frac13\cdot\frac13\\ 上限减去下限再加1就是总的相加的次数\\ &=(2-(z-2)+1)\cdot\frac19\\ &=\frac19(5-z) \end{aligned} pZ(z)1=x=z22pX(x)pY(zx)=x=z223131=(2(z2)+1)91=91(5z)

题目45

对于泊松分布,假设事件用 A A A B B B独立的标识出来,且满足概率 p A + p B = 1 p_A+p_B=1 pA+pB=1.如果泊松分布的参数是 λ \lambda λ.证明:标识为 A A A事件数据服从参数为 p A λ p_A\lambda pAλ的泊松分布

解题思路

根据题意,假设做了100次实验发生了15次,在这15次中事件是A 是7次事件B是8次。而不是事件发生记作A,事件不发生记作B

且满足概率 p A + p B = 1 p_A+p_B=1 pA+pB=1,则表示发生若干次事件中,只有A和B不会再有其他的类型事件了

N = A + B ∼ P o i s s i o n ( λ ) 在 N 发 生 的 情 况 下 , A 事 件 只 是 按 固 定 概 率 发 生 , A 事 件 发 生 的 次 数 服 务 二 项 分 布 P ( A ∣ N ) ∼ B i n ( N , p A ) p ( A = a ) = ∑ 0 ∞ P ( A = a ∣ N = n ) = ∑ 0 ∞ ( n a ) p A a ( 1 − p a ) n − a ⋅ e − λ ⋅ λ n n ! = ∑ 0 ∞ n ! a ! ⋅ ( n − a ) ! ⋅ p A a ( 1 − p a ) n − a ⋅ e − λ ⋅ λ n n ! = ∑ 0 ∞ p A a ( 1 − P A ) n − a ⋅ e − λ ⋅ λ n a ! ⋅ ( n − a ) ! 把 λ n 分 成 λ n − a ⋅ λ a = ∑ 0 ∞ p A a ( 1 − P A ) n − a ⋅ e − λ ⋅ λ n − a ⋅ λ a a ! ⋅ ( n − a ) ! = ∑ 0 ∞ p A a ⋅ e − λ ⋅ λ a a ! ⋅ ( 1 − p A ) n − a ⋅ λ n − a ( n − a ) ! ⋅ e − ( 1 − p A ) λ e − ( 1 − p A ) λ = p A a ⋅ e − λ ⋅ λ a a ! ⋅ e − ( 1 − p A ) λ ⋅ ⎵ 前 ∑ 0 ∞ ( 1 − p A ) n − a ⋅ λ n − a ⋅ e − ( 1 − p A ) λ ( n − a ) ! ⋅ ⎵ 后 本 式 的 后 半 部 分 简 化 : 令 t = n − a ∑ t = 0 ∞ e − ( 1 − p A ) λ ⋅ [ ( 1 − p A ) λ ] t t ! = 1 本 式 前 半 部 分 简 化 后 ( 后 半 式 为 1 , 所 以 前 半 部 分 也 是 最 终 结 果 ) : ( λ p A ) a ⋅ e − p A λ a ! 所 以 本 题 结 果 是 服 务 参 数 为 p A λ 的 泊 松 分 布 \begin{aligned} &N=A+B \sim Poission(\lambda)\\ 在N发生的情况下,&A事件只是按固定概率发生,A事件发生的次数服务二项分布\\ &P(A|N)\sim Bin(N,p_A)\\ p(A=a)&=\sum\limits_0^{\infty}P(A=a|N=n)\\ &=\sum\limits_0^{\infty} {n\choose a}{p_A}^a(1-p_a)^{n-a}\cdot\frac{e^{-\lambda}\cdot \lambda^n}{n!}\\ &=\sum\limits_0^{\infty}\frac{n!}{a!\cdot(n-a)!}\cdot{p_A}^a(1-p_a)^{n-a}\cdot\frac{e^{-\lambda}\cdot \lambda^n}{n!}\\ &=\sum\limits_0^{\infty}\frac{{p_A}^a(1-P_A)^{n-a}\cdot e^{-\lambda}\cdot \lambda^n}{a!\cdot(n-a)!}\\ 把\lambda^n&分成\lambda^{n-a}\cdot\lambda^a\\ &=\sum\limits_0^{\infty}\frac{{p_A}^a(1-P_A)^{n-a}\cdot e^{-\lambda}\cdot \lambda^{n-a}\cdot \lambda^a}{a!\cdot(n-a)!}\\ &=\sum\limits_0^{\infty} \frac{{p_A}^a\cdot e^{-\lambda}\cdot\lambda^a}{a!}\cdot \frac{(1-p_A)^{n-a}\cdot \lambda^{n-a}}{(n-a)!}\cdot \frac{e^{-(1-p_A)\lambda}}{e^{-(1-p_A)\lambda}}\\ &=\underbrace{\frac{{p_A}^a\cdot e^{-\lambda}\cdot\lambda^a}{a!\cdot e^{-(1-p_A)\lambda}} \cdot}_{前} \underbrace{\sum\limits_0^{\infty}\frac{(1-p_A)^{n-a}\cdot \lambda^{n-a}\cdot e^{-(1-p_A)\lambda}}{(n-a)!\cdot }}_{后}\\ 本式&的后半部分简化:令t=n-a\\ &\sum\limits_{t=0}^{\infty}\frac{e^{-(1-p_A)\lambda}\cdot[(1-p_A)\lambda]^t}{t!}=1\\ 本式&前半部分简化后(后半式为1,所以前半部分也是最终结果):\\ &\frac{(\lambda p_A)^a\cdot e^{-p_A\lambda}}{a!}\\ 所以&本题结果是服务参数为p_A\lambda的泊松分布 \end{aligned} Np(A=a)λnN=A+BPoission(λ)AAP(AN)Bin(N,pA)=0P(A=aN=n)=0(an)pAa(1pa)nan!eλλn=0a!(na)!n!pAa(1pa)nan!eλλn=0a!(na)!pAa(1PA)naeλλnλnaλa=0a!(na)!pAa(1PA)naeλλnaλa=0a!pAaeλλa(na)!(1pA)naλnae(1pA)λe(1pA)λ= a!e(1pA)λpAaeλλa 0(na)!(1pA)naλnae(1pA)λt=nat=0t!e(1pA)λ[(1pA)λ]t=1(1)a!(λpA)aepAλpAλ

题目46

T 1 T_1 T1 T 2 T_2 T2分别是参数为 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2的独立指数分布,计算 T 1 + T 2 T_1+T_2 T1+T2的密度函数

解题思路

根据卷积公式
f z ( z ) = ∫ − ∞ + ∞ f x ( x ) f y ( z − x ) d x f_z(z)=\int_{-\infty}^{+\infty}f_x(x)f_y(z-x)dx fz(z)=+fx(x)fy(zx)dx
接下来确定x的积分范围,根据指数分布前提x>0 然后 z-x>0,即 x<z,所以x的积分范围是从0到z
f z ( z ) = ∫ 0 z f x ( x ) f y ( z − x ) d x = ∫ 0 z λ 1 e − λ 1 x ⋅ λ 2 e − λ 2 ( z − x ) d x = λ 1 λ 2 ∫ 0 z e − λ 1 x ⋅ e − λ 2 ( z − x ) d x = λ 1 λ 2 ∫ 0 z e − λ 1 x − λ 2 ( z − x ) d x = λ 1 λ 2 ∫ 0 z e − λ 1 x − λ 2 z + λ 2 x d x = λ 1 λ 2 e − λ 2 z ∫ 0 z e λ 2 x − λ 1 x d x = λ 1 λ 2 e − λ 2 z ∫ 0 z e ( λ 2 − λ 1 ) x d x = λ 1 λ 2 e − λ 2 z ⋅ 1 λ 2 − λ 1 ∫ 0 z e ( λ 2 − λ 1 ) x d ( ( λ 2 − λ 1 ) x ) = λ 1 λ 2 λ 2 − λ 1 ⋅ e − λ 2 z ⋅ e ( λ 2 − λ 1 ) x ∣ 0 z = λ 1 λ 2 λ 2 − λ 1 e − λ 2 z ( e ( λ 2 − λ 1 ) z − 1 ) = λ 1 λ 2 λ 2 − λ 1 ( e − λ 1 z − e − λ 2 z ) \begin{aligned} f_z(z)&amp;=\int_{0}^{z}f_x(x)f_y(z-x)dx\\ &amp;=\int_{0}^{z}\lambda_1 e^{-\lambda_1 x} \cdot \lambda_2e^{-\lambda_2(z-x)}dx\\ &amp;=\lambda_1\lambda_2\int_{0}^{z}e^{-\lambda_1x}\cdot e^{-\lambda_2(z-x)}dx\\ &amp;=\lambda_1\lambda_2\int_{0}^{z}e^{-\lambda_1x-\lambda_2(z-x)}dx\\ &amp;=\lambda_1\lambda_2\int_{0}^{z}e^{-\lambda_1x-\lambda_2z+\lambda_2x}dx\\ &amp;=\lambda_1\lambda_2e^{-\lambda_2z}\int_{0}^{z}e^{\lambda_2x-\lambda_1x}dx\\ &amp;=\lambda_1\lambda_2e^{-\lambda_2z}\int_{0}^{z}e^{(\lambda_2-\lambda_1)x}dx\\ &amp;=\lambda_1\lambda_2e^{-\lambda_2z}\cdot \frac{1}{\lambda_2-\lambda_1}\int_{0}^{z}e^{(\lambda_2-\lambda_1)x}d((\lambda_2-\lambda_1)x)\\ &amp;=\frac{\lambda_1\lambda_2}{\lambda_2-\lambda_1}\cdot e^{-\lambda_2z}\cdot e^{(\lambda_2-\lambda_1)x} \bigg |_0^z\\ &amp;=\frac{\lambda_1\lambda_2}{\lambda_2-\lambda_1}e^{-\lambda_2z}(e^{(\lambda_2-\lambda_1)z}-1)\\ &amp;=\frac{\lambda_1\lambda_2}{\lambda_2-\lambda_1}(e^{-\lambda_1z}-e^{-\lambda_2z}) \end{aligned} fz(z)=0zfx(x)fy(zx)dx=0zλ1eλ1xλ2eλ2(zx)dx=λ1λ20zeλ1xeλ2(zx)dx=λ1λ20zeλ1xλ2(zx)dx=λ1λ20zeλ1xλ2z+λ2xdx=λ1λ2eλ2z0zeλ2xλ1xdx=λ1λ2eλ2z0ze(λ2λ1)xdx=λ1λ2eλ2zλ2λ110ze(λ2λ1)xd((λ2λ1)x)=λ2λ1λ1λ2eλ2ze(λ2λ1)x0z=λ2λ1λ1λ2eλ2z(e(λ2λ1)z1)=λ2λ1λ1λ2(eλ1zeλ2z)

题目47

X X X Y Y Y是独立的标准的正态随机变量,计算 Z = X + Y Z=X+Y Z=X+Y的密度,并证明: Z Z Z 也是正态分布(提示在积分过程 中利用配方技术)

解题思路

利用卷积公式
f z ( z ) = ∫ − ∞ + ∞ f x ( x ) f y ( z − x ) d x = ∫ − ∞ + ∞ 1 2 π e − x 2 2 ⋅ 1 2 π e − ( z − x ) 2 2 = 1 2 π ∫ − ∞ + ∞ e − x 2 2 − ( z − x ) 2 2 d x = 1 2 π ∫ − ∞ + ∞ e ( − x 2 − 1 2 z 2 + x z ) d x = 1 2 π ∫ − ∞ + ∞ e − ( x − z 2 ) 2 − 1 4 z 2 d x = 1 2 π e z 2 2 ∫ − ∞ + ∞ e − ( x − z 2 ) 2 d x 令 u = ( x − z 2 ) 则 : = 1 2 π e z 2 2 ∫ − ∞ + ∞ e − u 2 d u ∫ − ∞ + ∞ e − u 2 d u 与 z 没 有 关 系 所 以 算 出 来 是 一 个 常 数 c = c 1 2 π e z 2 2 \begin{aligned} f_z(z)&amp;=\int_{-\infty}^{+\infty}f_x(x)f_y(z-x)dx\\ &amp;=\int_{-\infty}^{+\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\cdot\frac{1}{\sqrt{2\pi}}e^{-\frac{(z-x)^2}{2}}\\ &amp;=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-\frac{x^2}{2}-\frac{(z-x)^2}{2}}dx\\ &amp;=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{(-x^2-\frac12z^2+xz)}dx\\ &amp;=\frac{1}{2\pi}\int_{-\infty}^{+\infty}e^{-(x-\frac{z}{2})^2-\frac14z^2}dx\\ &amp;=\frac{1}{2\pi}e^{\frac{z^2}{2}}\int_{-\infty}^{+\infty}e^{-(x-\frac{z}{2})^2}dx\\ 令u=(x-\frac{z}{2})则:\\ &amp;=\frac{1}{2\pi}e^{\frac{z^2}{2}}\int_{-\infty}^{+\infty}e^{-u^2}du\\ \int_{-\infty}^{+\infty}e^{-u^2}du与z没有关系所以算出来是一个常数c\\ &amp;=c\frac1{2\pi}e^{\frac{z^2}{2}} \end{aligned} fz(z)u=(x2z)+eu2duzc=+fx(x)fy(zx)dx=+2π 1e2x22π 1e2(zx)2=2π1+e2x22(zx)2dx=2π1+e(x221z2+xz)dx=2π1+e(x2z)241z2dx=2π1e2z2+e(x2z)2dx=2π1e2z2+eu2du=c2π1e2z2
所以本题结果是一个均值为0标准差为1的正态分布

题目48

N 1 N_1 N1 N 2 N_2 N2是独立随机变量,分别服从参数为 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2,证明: N = N 1 + N 2 N=N_1+N_2 N=N1+N2的分布是参数为 λ 1 + λ 2 \lambda_1+\lambda_2 λ1+λ2的泊松分布

解题思路

利用卷积公式
根据题意确定上下限, x ≥ 0 且 z − x ≥ 0 x\geq0且z-x\geq0 x0zx0,所以 x ≤ z x\leq z xz
p Z ( z ) = ∑ x = − ∞ ∞ p X ( x ) p Y ( z − x ) = ∑ x = 0 z λ 1 x e − λ 1 x ! ⋅ λ 2 z − x e − λ 2 ( z − x ) ! = ∑ x = 0 z e − λ 1 − λ 2 λ 1 x λ 2 z − x x ! ( z − x ) ! = e − λ 1 − λ 2 ∑ x = 0 z 1 x ! ( z − x ) ! ⋅ λ 1 x λ 2 z − x = e − λ 1 − λ 2 ∑ x = 0 z ( z x ) z ! ⋅ λ 1 x λ 2 z − x = e − λ 1 − λ 2 z ! ∑ x = 0 z ( z x ) ⋅ λ 1 x λ 2 z − x = e − λ 1 − λ 2 z ! ⋅ ( λ 1 + λ 2 ) z = e − ( λ 1 + λ 2 ) ( λ 1 + λ 2 ) z z ! \begin{aligned} p_Z(z)&amp;=\sum\limits_{x=-\infty}^{\infty}p_X(x)p_Y(z-x)\\ &amp;=\sum\limits_{x=0}^{z}\frac{\lambda_1^xe^{-\lambda_1}}{x!}\cdot\frac{\lambda_2^{z-x}e^{-\lambda_2}}{(z-x)!}\\ &amp;=\sum\limits_{x=0}^{z}\frac{e^{-\lambda_1-\lambda_2}\lambda_1^x\lambda_2^{z-x}}{x!(z-x)!}\\ &amp;=e^{-\lambda_1-\lambda_2}\sum\limits_{x=0}^{z}\frac{1}{x!(z-x)!}\cdot \lambda_1^x\lambda_2^{z-x}\\ &amp;=e^{-\lambda_1-\lambda_2}\sum\limits_{x=0}^{z} \frac{z\choose x}{z!}\cdot \lambda_1^x\lambda_2^{z-x}\\ &amp;=\frac{e^{-\lambda_1-\lambda_2}}{z!}\sum\limits_{x=0}^{z} {z\choose x}\cdot \lambda_1^x\lambda_2^{z-x}\\ &amp;=\frac{e^{-\lambda_1-\lambda_2}}{z!}\cdot(\lambda_1+\lambda_2)^z\\ &amp;=\frac{e^{-(\lambda_1+\lambda_2)}(\lambda_1+\lambda_2)^z}{z!} \end{aligned} pZ(z)=x=pX(x)pY(zx)=x=0zx!λ1xeλ1(zx)!λ2zxeλ2=x=0zx!(zx)!eλ1λ2λ1xλ2zx=eλ1λ2x=0zx!(zx)!1λ1xλ2zx=eλ1λ2x=0zz!(xz)λ1xλ2zx=z!eλ1λ2x=0z(xz)λ1xλ2zx=z!eλ1λ2(λ1+λ2)z=z!e(λ1+λ2)(λ1+λ2)z

题目49

计算 Z = X + Y Z=X+Y Z=X+Y的密度函数,其中 X 和 Y X和Y XY的联合密度由3.3节中的3.3.4给出

解题思路

找到书中对应的密度函数
f ( x , y ) = { λ 2 e − λ y 0 ≤ x ≤ y , λ &gt; 0 0 其 它 情 况 f(x,y)=\left\{ \begin{aligned} &amp;\lambda^2e^{-\lambda y} \quad 0\leq x \leq y,\lambda &gt;0\\ &amp;0 \quad \quad \quad 其它情况 \end{aligned} \right. f(x,y)={λ2eλy0xy,λ>00
分析条件y=z-x 且 x<y 则 x &lt; z − x = &gt; x &lt; z 2 x&lt;z-x =&gt; x&lt;\frac{z}2 x<zx=>x<2z

f Z ( z ) = ∫ 0 z 2 f ( x , z − x ) d x = ∫ 0 z 2 λ 2 e − λ ( z − x ) d x = λ 2 ⋅ 1 − λ ⋅ − 1 ∫ 0 z 2 e − λ ( z − x ) d ( − λ ( z − x ) ) = λ ⋅ ( e − λ z 2 − e − λ z ) \begin{aligned} f_Z(z)&amp;=\int_0^{\frac z2}f(x,z-x)dx\\ &amp;=\int_0^{\frac z2}\lambda^2e^{-\lambda(z-x)}dx\\ &amp;=\lambda^2\cdot\frac1{-\lambda\cdot -1}\int_0^{\frac z2}e^{-\lambda(z-x)}d(-\lambda(z-x))\\ &amp;=\lambda\cdot(e^{-\lambda\frac z2}-e^{-\lambda z}) \end{aligned} fZ(z)=02zf(x,zx)dx=02zλ2eλ(zx)dx=λ2λ1102zeλ(zx)d(λ(zx))=λ(eλ2zeλz)

题目50

令X和Y是且有联合分布的连续随机变量,求Z=X-Y的密度表达式

解题思路

思路1:
F Z ( z ) = P ( Z ≤ z ) = P ( X − Y ≤ z ) = ∬ x − y ≤ z f ( x , y ) d x d y = ∫ − ∞ ∞ ∫ − ∞ y + z f ( x , y ) d x d y = ∫ − ∞ ∞ [ ∫ − ∞ y + z f ( x , y ) d x ] d y 令 u = x − y = ∫ − ∞ ∞ [ ∫ − ∞ z f ( y + u , y ) d u ] d y f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ ∞ f ( y + z , y ) d y \begin{aligned} F_Z(z)&amp;=P(Z\leq z)=P(X-Y\leq z)\\ &amp;=\iint\limits_{x-y\leq z}f(x,y)dxdy\\ &amp;=\int_{-\infty}^{\infty}\int_{-\infty}^{y+z}f(x,y)dxdy\\ &amp;=\int_{-\infty}^{\infty}\left[ \int_{-\infty}^{y+z}f(x,y)dx \right]dy\\ 令u&amp;=x-y\\ &amp;=\int_{-\infty}^{\infty}\left[ \int_{-\infty}^{z}f(y+u,y)du \right] dy\\ f_Z(z)&amp;=F_Z^{&#x27;}(z)=\int_{-\infty}^{\infty}f(y+z,y)dy \end{aligned} FZ(z)ufZ(z)=P(Zz)=P(XYz)=xyzf(x,y)dxdy=y+zf(x,y)dxdy=[y+zf(x,y)dx]dy=xy=[zf(y+u,y)du]dy=FZ(z)=f(y+z,y)dy
参考:https://wenku.baidu.com/view/d86049500c22590102029df1.html
思路2:
F Z ( z ) = P ( Z ≤ z ) = P ( X − Y ≤ z ) = ∬ x − y ≤ z f ( x , y ) d x d y = ∫ − ∞ ∞ ∫ x − z ∞ f ( x , y ) d y d x = ∫ − ∞ ∞ [ ∫ x − z ∞ f ( x , y ) d y ] d x 令 u = x − y = ∫ − ∞ ∞ [ ∫ z − ∞ f ( x , x − u ) d u ⋅ − 1 ] d x = ∫ − ∞ ∞ [ ∫ − ∞ z f ( x , x − u ) d u ] d x f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ ∞ f ( x , x − z ) d x \begin{aligned} F_Z(z)&amp;=P(Z\leq z)=P(X-Y\leq z)\\ &amp;=\iint\limits_{x-y\leq z}f(x,y)dxdy\\ &amp;=\int_{-\infty}^{\infty}\int_{x-z}^{\infty}f(x,y)dydx\\ &amp;=\int_{-\infty}^{\infty}\left[ \int_{x-z}^{\infty}f(x,y)dy \right]dx\\ 令u=x-y\\ &amp;=\int_{-\infty}^{\infty}\left[ \int_{z}^{-\infty}f(x,x-u)du\cdot -1 \right]dx\\ &amp;=\int_{-\infty}^{\infty}\left[ \int_{-\infty}^{z}f(x,x-u)du\right]dx\\ f_Z(z)&amp;=F_Z^{&#x27;}(z)=\int_{-\infty}^{\infty}f(x,x-z)dx \end{aligned} FZ(z)u=xyfZ(z)=P(Zz)=P(XYz)=xyzf(x,y)dxdy=xzf(x,y)dydx=[xzf(x,y)dy]dx=[zf(x,xu)du1]dx=[zf(x,xu)du]dx=FZ(z)=f(x,xz)dx

题目51

X X X Y Y Y是且有联密度函数 f ( x , y ) , Z = X Y f(x,y),Z=XY f(x,y),Z=XY证明:Z的密度函数为
f Z ( z ) = ∫ − ∞ ∞ f ( y , z y ) 1 ∣ y ∣ d y f_Z(z)=\int_{-\infty}^{\infty}f(y,\frac zy)\frac{1}{|y|}dy fZ(z)=f(y,yz)y1dy

解题思路

P ( Z ≤ z ) = P ( X Y ≤ z ) = P ( X ≤ z y ∣ Y &gt; 0 ) + P ( X &gt; z y ∣ Y &lt; 0 ) = ∫ 0 ∞ d y ∫ − ∞ z y f ( x , y ) d x + ∫ − ∞ 0 d y ∫ z y ∞ f ( x , y ) d x 因 此 : f Z ( z ) = ∫ 0 ∞ d y ⋅ 1 y f ( z y , y ) − ∫ − ∞ 0 d y ⋅ 1 y f ( z y , y ) 如 果 lim ⁡ y → 0 f ( z y , y ) y 有 限 , 则 上 式 可 以 简 写 成 f Z ( z ) = ∫ − ∞ ∞ f ( z y , y ) 1 ∣ y ∣ d y \begin{aligned} P(Z\leq z)&amp;=P(XY\leq z)\\ &amp;=P(X\leq \frac zy|Y&gt;0)+P(X&gt;\frac zy|Y&lt;0)\\ &amp;=\int_0^{\infty}dy\int_{-\infty}^{\frac zy}f(x,y)dx+\int_{-\infty}^{0}dy\int_{\frac zy}^{\infty}f(x,y)dx\\ 因此:\\ f_Z(z)&amp;=\int_0^{\infty}dy \cdot\frac1yf(\frac zy,y)-\int_{-\infty}^{0}dy \cdot\frac1yf(\frac zy,y)\\ 如果\lim\limits_{y\rightarrow0}\frac{f(\frac zy,y)}{y}有限,&amp;则上式可以简写成\\ f_Z(z)&amp;=\int_{-\infty}^{\infty}f(\frac zy,y)\frac1{|y|}dy \end{aligned} P(Zz):fZ(z)y0limyf(yz,y)fZ(z)=P(XYz)=P(XyzY>0)+P(X>yzY<0)=0dyyzf(x,y)dx+0dyyzf(x,y)dx=0dyy1f(yz,y)0dyy1f(yz,y)=f(yz,y)y1dy

题目52

计算两个独立随机变量商的密度

解题思路

假定两个变量是标准的均匀密度即在【0,1】之间

根据书中公式
f Z ( z ) = ∫ − ∞ ∞ ∣ x ∣ f X ( x ) f Y ( x z ) d x f_Z(z)=\int_{-\infty}^{\infty}|x|f_X(x)f_Y(xz)dx fZ(z)=xfX(x)fY(xz)dx
标准密度即 f Z ( x ) = 1 , f Y ( y ) = 1 f_Z(x)=1,f_Y(y)=1 fZ(x)=1,fY(y)=1,根据题意 0 ≤ x ≤ 1 0\leq x \leq 1 0x1
f Z ( z ) = ∫ 0 1 x ⋅ 1 ⋅ 1 d x = 1 2 \begin{aligned} f_Z(z)&amp;=\int_0^1x\cdot1\cdot 1dx\\ &amp;=\frac12 \end{aligned} fZ(z)=01x11dx=21

题目53

考虑用两种方法构建两个矩形,令 U 1 , U 2 , U 3 U_1,U_2,U_3 U1,U2,U3 [ 0 , 1 ] [0,1] [0,1]上独立的均匀随机变量,一个矩形的连长为 U 1 和 U 2 U_1和U_2 U1U2,另一个是连长为 U 3 U_3 U3的正方形,计算正方形面积大于矩形面积的概率

解题思路

根据题意: P ( U 3 2 &gt; U 2 U 3 ) = P ( U 2 &gt; U 2 U 1 ) P(U_3^2&gt;U_2U_3)=P(U_2&gt;\sqrt{U_2U_1}) P(U32>U2U3)=P(U2>U2U1 )
P ( U 2 &gt; U 2 U 1 ) = ∫ 0 1 ∫ 0 1 ∫ u 2 u 1 1 f ( u 1 , u 2 , u 3 ) d u 3 d u 2 d u 1 = ∫ 0 1 ∫ 0 1 ∫ u 2 u 1 1 d u 3 d u 2 d u 1 = ∫ 0 1 ∫ 0 1 1 − u 2 ⋅ u 1 d u 2 d u 1 = ∫ 0 1 [ u 2 − 2 u 1 u 2 3 2 3 ] 0 1 d u 1 = ∫ 0 1 1 − 2 u 1 3 d u 1 = [ u 1 − 2 3 ⋅ 2 u 1 3 2 3 ] 0 1 = 5 9 \begin{aligned} P(U_2&gt;\sqrt{U_2U_1})&amp;=\int_0^1\int_0^1\int_{\sqrt{u_2u_1}}^1f(u_1,u_2,u_3)du_3du_2du_1\\ &amp;=\int_0^1\int_0^1\int_{\sqrt{u_2u_1}}^1du_3du_2du_1\\ &amp;=\int_0^1\int_0^11-\sqrt u_2\cdot \sqrt u_1 du_2du_1\\ &amp;=\int_0^1\left[ u_2-\frac{2\sqrt{u_1}{u_2}^{\frac32}}{3} \right]_0^1du_1\\ &amp;=\int_0^11-\frac{2\sqrt{u_1}}{3}du_1\\ &amp;=\left[u_1-\frac23\cdot\frac{2{u_1}^{\frac32}}{3} \right]_0^1\\ &amp;=\frac59 \end{aligned} P(U2>U2U1 )=0101u2u1 1f(u1,u2,u3)du3du2du1=0101u2u1 1du3du2du1=01011u 2u 1du2du1=01[u232u1 u223]01du1=01132u1 du1=[u13232u123]01=95

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值