数理统计与数据分析第三版习题 第3章 第54-69题

题目54

X X X, Y Y Y Z Z Z是独立的 N ( 0 , σ 2 ) N(0,{\sigma}^2) N(0,σ2).随机变量 Θ , Φ 和 R \Theta,\Phi和R Θ,ΦR ( X , Y , Z ) (X,Y,Z) (X,Y,Z)的球形坐标:
x = r s i n ϕ c o s θ y = r s i n ϕ s i n θ z = r c o s ϕ 0 ≤ ϕ ≤ π , 0 ≤ θ ≤ 2 π \begin{aligned} x&=rsin\phi cos\theta\\ y&=rsin\phi sin\theta\\ z&=rcos\phi\\ 0\leq \phi&\leq \pi, 0\leq \theta\leq 2\pi \end{aligned} xyz0ϕ=rsinϕcosθ=rsinϕsinθ=rcosϕπ,0θ2π
计算 Θ , Φ 和 R \Theta,\Phi和R Θ,ΦR的联合密度和边际密度.(提示: d x d y d z = r 2 s i n ϕ d r d θ d ϕ dxdydz=r^2sin\phi drd\theta d\phi dxdydz=r2sinϕdrdθdϕ)

解题思路

根据球形坐标的转换提示,我们直接求联合密度:
f R , Φ , Θ ( r , ϕ , θ ) = f X , Y , Z ( r s i n ϕ c o s θ , r s i n ϕ s i n θ , r c o s ϕ ) r 2 s i n ϕ = 1 2 π σ e − ( r s i n ϕ c o s θ ) 2 2 σ 2 ⋅ 1 2 π σ e − ( , r s i n ϕ s i n θ ) 2 2 σ 2 ⋅ 1 2 π σ e − ( r c o s ϕ ) 2 2 σ 2 r 2 sin ⁡ ϕ = ( 2 π ) − 3 2 ⋅ σ − 3 ⋅ e − r 2 s i n 2 ϕ c o s 2 θ + r 2 sin ⁡ 2 ϕ sin ⁡ 2 θ + r 2 cos ⁡ 2 ϕ 2 σ 2 r 2 sin ⁡ ϕ = sin ⁡ ϕ ⋅ 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ⋅ r 2 ⋅ e − r 2 2 σ 2 \begin{aligned} f_{R,\Phi,\Theta}(r,\phi,\theta)&=f_{X,Y,Z}(rsin\phi cos\theta,rsin\phi sin\theta,rcos\phi) r^2sin\phi\\ &=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(rsin\phi cos\theta)^2}{2\sigma^2}}\cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(,rsin\phi sin\theta)^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(rcos\phi)^2}{2\sigma^2}} r^2 \sin\phi\\ &={(2\pi)}^{-\frac32} \cdot \sigma^{-3}\cdot e^{-\frac{r^2sin^2\phi cos^2\theta+r^2\sin^2\phi \sin^2\theta+r^2\cos^2\phi}{2\sigma^2}}r^2 \sin\phi\\ &=\sin\phi \cdot \frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot r^2 \cdot e^{-\frac{r^2}{2\sigma^2}} \end{aligned} fR,Φ,Θ(r,ϕ,θ)=fX,Y,Z(rsinϕcosθ,rsinϕsinθ,rcosϕ)r2sinϕ=2π σ1e2σ2(rsinϕcosθ)22π σ1e2σ2(,rsinϕsinθ)22π σ1e2σ2(rcosϕ)2r2sinϕ=(2π)23σ3e2σ2r2sin2ϕcos2θ+r2sin2ϕsin2θ+r2cos2ϕr2sinϕ=sinϕ2π12π 1σ31r2e2σ2r2

求边际密度
f r ( r ) = ∫ 0 π ∫ 0 2 π f R , Φ , Θ ( r , ϕ , θ ) d θ d ϕ = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ∫ 0 π ∫ 0 2 π sin ⁡ ϕ ⋅ r 2 ⋅ e − r 2 2 σ 2 d θ d ϕ = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ∫ 0 π sin ⁡ ϕ d ϕ ⋅ ∫ 0 2 π d θ ⋅ r 2 e − r 2 2 σ 2 = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ⋅ 2 ⋅ 2 π ⋅ r 2 e − r 2 2 σ 2 = 2 π σ 3 r 2 e − r 2 2 σ 2 \begin{aligned} f_r(r)&=\int_0^\pi\int_0^{2\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\theta d\phi\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\pi\int_0^{2\pi}\sin\phi\cdot r^2\cdot e^{-\frac{r^2}{2\sigma^2}}d\theta d\phi\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\pi\sin\phi d\phi \cdot\int_0^{2\pi}d\theta \cdot r^2e^{-\frac{r^2}{2\sigma^2}}\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3} \cdot 2 \cdot 2\pi \cdot r^2e^{-\frac{r^2}{2\sigma^2}}\\ &=\frac{\sqrt2}{\sqrt\pi \sigma^3}r^2e^{-\frac{r^2}{2\sigma^2}} \end{aligned} fr(r)=0π02πfR,Φ,Θ(r,ϕ,θ)dθdϕ=2π12π 1σ310π02πsinϕr2e2σ2r2dθdϕ=2π12π 1σ310πsinϕdϕ02πdθr2e2σ2r2=2π12π 1σ3122πr2e2σ2r2=π σ32 r2e2σ2r2
f Φ ( ϕ ) = ∫ 0 ∞ ∫ 0 2 π f R , Φ , Θ ( r , ϕ , θ ) d θ d r = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ∫ 0 ∞ ∫ 0 2 π sin ⁡ ϕ ⋅ r 2 ⋅ e − r 2 2 σ 2 d θ d r = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ⋅ sin ⁡ ϕ ⋅ ∫ 0 2 π d θ ∫ 0 ∞ r 2 e − r 2 2 σ 2 d r = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ⋅ sin ⁡ ϕ ⋅ 2 π ⋅ π 2 σ 3 = sin ⁡ ϕ 2 \begin{aligned} f_\Phi(\phi)&=\int_0^{\infty}\int_0^{2\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\theta dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^\infty\int_0^{2\pi}\sin\phi\cdot r^2\cdot e^{-\frac{r^2}{2\sigma^2}}d\theta dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot \sin\phi \cdot \int_0^{2\pi}d\theta \int_0^\infty r^2e^{-\frac{r^2}{2\sigma^2}} dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3} \cdot \sin\phi \cdot 2\pi \cdot \frac{\sqrt\pi}{\sqrt2}\sigma^3\\ &=\frac{\sin\phi}{2} \end{aligned} fΦ(ϕ)=002πfR,Φ,Θ(r,ϕ,θ)dθdr=2π12π 1σ31002πsinϕr2e2σ2r2dθdr=2π12π 1σ31sinϕ02πdθ0r2e2σ2r2dr=2π12π 1σ31sinϕ2π2 π σ3=2sinϕ
f Θ ( θ ) = ∫ 0 ∞ ∫ 0 π f R , Φ , Θ ( r , ϕ , θ ) d ϕ d r = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ∫ 0 π sin ⁡ ϕ d ϕ ⋅ ∫ 0 ∞ r 2 ⋅ e − r 2 2 σ 2 d r = 1 2 π ⋅ 1 2 π ⋅ 1 σ 3 ⋅ 2 ⋅ π 2 σ 3 = 1 2 π \begin{aligned} f_\Theta(\theta)&=\int_0^{\infty}\int_0^{\pi}f_{R,\Phi,\Theta}(r,\phi,\theta)d\phi dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\int_0^{\pi}\sin\phi d\phi \cdot \int_0^\infty r^2\cdot e^{-\frac{r^2}{2\sigma^2}}dr\\ &=\frac1{2\pi}\cdot \frac1{\sqrt{2\pi}}\cdot \frac1{\sigma^3}\cdot 2 \cdot \frac{\sqrt\pi}{\sqrt2}\sigma^3\\ &=\frac1{2\pi} \end{aligned} fΘ(θ)=00πfR,Φ,Θ(r,ϕ,θ)dϕdr=2π12π 1σ310πsinϕdϕ0r2e2σ2r2dr=2π12π 1σ3122 π σ3=2π1
f R , Φ , Θ ( r , ϕ , θ ) = f r ( r ) f Φ ( ϕ ) f Θ ( θ ) f_{R,\Phi,\Theta}(r,\phi,\theta)=f_r(r)f_\Phi(\phi)f_\Theta(\theta) fR,Φ,Θ(r,ϕ,θ)=fr(r)fΦ(ϕ)fΘ(θ)三个变量转换为球形坐标后也是独立的。

计算上边三个边际密度时,有一个关键积分公式:
∫ 0 ∞ x 2 n e − x 2 α 2 d x = π ( 2 n ) ! n ! ( α 2 ) 2 n + 1 \int_0^\infty x^{2n}e^{-\frac{x^2}{\alpha^2}}dx=\sqrt\pi\frac{(2n)!}{n!}(\frac{\alpha}{2})^{2n+1} 0x2neα2x2dx=π n!(2n)!(2α)2n+1

题目55

从单位元内部按如下规则生成一点:半径R是[0,1]上的均匀随机变量,角度 Θ 是 [ 0 , 2 π ] \Theta是[0,2\pi] Θ[0,2π]上我均匀随机变量,并且与R独立

a.计算 X = R cos ⁡ θ , Y = R sin ⁡ θ X=R\cos\theta,Y=R\sin\theta X=Rcosθ,Y=Rsinθ的随便密度
b.计算 X 和 Y X和Y XY的边际密度
c.密度是圆盘上的均匀分布吗?如果不是修正该方法是密度是均匀分布

解题思路

a.
R ∼ U [ 0 , 1 ] Θ ∼ U [ 0 , 2 π ] ( X = R cos ⁡ Θ , Y = R sin ⁡ Θ ) ⇒ ( R = X 2 + Y 2 , Θ = tan ⁡ − 1 Y X ) ∣ J ∣ = ∥ ∂ r ∂ x ∂ r ∂ y ∂ θ ∂ x ∂ θ ∂ y ∥ = 1 x 2 + y 2 f X Y ( x , y ) = f R Θ ( x 2 + y 2 , tan ⁡ − 1 y x ) ⋅ 1 x 2 + y 2 = 1 2 π ⋅ 1 x 2 + y 2 x 2 + y 2 ≤ 1 \begin{aligned} &R\sim U[0,1]\\ &\Theta\sim U[0,2\pi]\\ &(X=R\cos\Theta,Y=R\sin\Theta)\Rightarrow (R=\sqrt{X^2+Y^2},\Theta=\tan^{-1}\frac{Y}{X})\\ &|J|=\begin{Vmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{Vmatrix} =\frac{1}{\sqrt{x^2+y^2}}\\ f_{XY}(x,y)&=f_{R\Theta}(\sqrt{x^2+y^2},\tan^{-1}\frac{y}{x})\cdot\frac{1}{\sqrt{x^2+y^2}}\\ &=\frac1{2\pi}\cdot\frac{1}{\sqrt{x^2+y^2}} \qquad x^2+y^2\leq 1 \end{aligned} fXY(x,y)RU[0,1]ΘU[0,2π](X=RcosΘ,Y=RsinΘ)(R=X2+Y2 ,Θ=tan1XY)J=xrxθyryθ=x2+y2 1=fRΘ(x2+y2 ,tan1xy)x2+y2 1=2π1x2+y2 1x2+y21
b.计算 X 和 Y X和Y XY的边际密度
f X ( x ) = ∫ − 1 − x 2 1 − x 2 f X Y ( x , y ) d y = ∫ − 1 − x 2 1 − x 2 1 2 π ⋅ 1 x 2 + y 2 d y = 1 π ∫ 0 1 − x 2 1 x 2 + y 2 d y = 1 π [ ln ⁡ ( y + x 2 + y 2 ) ] ∣ 0 1 − x 2 = 1 π ln ⁡ ( 1 − x 2 + 1 ∣ x ∣ ) − 1 ≤ x ≤ 1 同 样 道 理 : f Y ( y ) = 1 π ln ⁡ ( 1 − y 2 + 1 ∣ y ∣ ) − 1 ≤ y ≤ 1 \begin{aligned} f_X(x)&=\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}f_{XY}(x,y)dy\\ &=\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}}\frac1{2\pi}\cdot\frac{1}{\sqrt{x^2+y^2}}dy\\ &=\frac1\pi\int_{0}^{\sqrt{1-x^2}}\frac{1}{\sqrt{x^2+y^2}}dy\\ &=\frac1\pi[\ln(y+\sqrt{x^2+y^2})] \Bigg |_0^{\sqrt{1-x^2}}\\ &=\frac1\pi\ln(\frac{\sqrt{1-x^2}+1}{|x|}) \quad -1\leq x \leq 1\\ 同样道理:\\ f_Y(y)=&\frac1\pi\ln(\frac{\sqrt{1-y^2}+1}{|y|}) \quad -1\leq y \leq 1\\ \end{aligned} fX(x)fY(y)==1x2 1x2 fXY(x,y)dy=1x2 1x2 2π1x2+y2 1dy=π101x2 x2+y2 1dy=π1[ln(y+x2+y2 )]01x2 =π1ln(x1x2 +1)1x1π1ln(y1y2 +1)1y1
c.密度是圆盘上的均匀分布吗?如果不是修正该方法是密度是均匀分布
f R ( r ) = 1 ⇒ F R ( r ) = r \begin{aligned} f_R(r)=1\Rightarrow F_R(r)=r \end{aligned} fR(r)=1FR(r)=r
如果要在圆盘上均匀分布,则应该按面积进行均匀分布如果整个圆是1 ,则:
F R ( r ) = 2 π r 2 2 π = r 2 很 明 显 r ! = r 2 F_R(r)=\frac{2\pi r^2}{2\pi}=r^2 很明显 r!=r^2 FR(r)=2π2πr2=r2r!=r2,不是均匀分布

F R ( r ) = r 2 ⇒ f R ( r ) = 2 r F_R(r)=r^2\Rightarrow f_R(r)=2r FR(r)=r2fR(r)=2r

f R Θ ( r , θ ) = 2 r ⋅ 1 2 π = r π f_{R\Theta}(r,\theta)=2r\cdot\frac1{2\pi}=\frac r\pi fRΘ(r,θ)=2r2π1=πr

题目56

如果 X X X Y Y Y是独立的随机变量,计算点 ( X , Y ) (X,Y) XY的极坐标R和 Θ \Theta Θ的联合分布,R和 Θ \Theta Θ独立吗?

解题思路

未找到答案

题目57

假设 Y 1 Y_1 Y1 Y 2 Y_2 Y2服从二元正态分布,具有参数 μ Y 1 = μ Y 2 = 0 , σ Y 1 2 = 1 , σ Y 2 2 = 2 , 且 ρ = 1 / 2 \mu_{Y_1}=\mu_{Y_2}=0,\sigma_{Y_1}^2=1,\sigma_{Y_2}^2=2,且\rho=1/\sqrt{2} μY1=μY2=0,σY12=1,σY22=2,ρ=1/2 .线性变换 x 1 = a 11 y 1 + a 12 y 2 , x 2 = a 21 y 1 + a 22 y 2 x_1=a_{11}y_1+a_{12}y_2,x_2=a_{21}y_1+a_{22}y_2 x1=a11y1+a12y2,x2=a21y1+a22y2 使得 x 1 x_1 x1 x 2 x_2 x2是独立的标准的正态分布?

解题思路

几个关键公式
1.二元正态分布密度函数
f ( y 1 , y 2 ) = 1 2 π σ Y 1 σ y 2 1 − ρ 2 e x p [ − 1 2 ( 1 − ρ 2 ) ( ( y 1 − μ Y 1 ) 2 σ y 1 2 − 2 ρ ( y 1 − μ Y 1 ) ( y 2 − μ Y 2 ) σ Y 1 σ Y 2 + ( y 2 − μ Y 2 ) 2 σ y 2 2 ) ] f(y_1,y_2)=\frac{1}{2\pi\sigma_{Y_1}\sigma_{y_2}\sqrt{1-\rho^2}}exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(y_1-\mu_{Y_1})^2}{\sigma_{y_1}^2}-\frac{2\rho(y_1-\mu_{Y_1})(y_2-\mu_{Y_2})}{\sigma_{Y_1}\sigma_{Y_2}}+ \frac{(y_2-\mu_{Y_2})^2}{\sigma_{y_2}^2}\right)\right]} f(y1,y2)=2πσY1σy21ρ2 1exp[2(1ρ2)1(σy12(y1μY1)2σY1σY22ρ(y1μY1)(y2μY2)+σy22(y2μY2)2)]
2.设 ( Y 1 , Y 2 ) ∼ N ( μ Y 1 , μ Y 2 , σ Y 1 2 , σ Y 2 2 , ρ ) (Y_1,Y_2)\sim N(\mu_{Y_1},\mu_{Y_2},\sigma_{Y_1}^2,\sigma_{Y_2}^2,\rho) (Y1,Y2)N(μY1,μY2,σY12,σY22,ρ) Y 1 Y_1 Y1 Y 2 Y_2 Y2的线性组合仍然服从正态分布,且 a Y 1 + b Y 2 ∼ N ( a μ Y 1 + b μ Y 2 , a 2 σ Y 1 2 + b 2 σ Y 2 2 + 2 a b ρ σ Y 1 σ Y 2 ) aY_1+bY_2 \sim N(a\mu_{Y_1}+b\mu_{Y_2},a^2\sigma_{Y_1}^2+b^2\sigma_{Y_2}^2+2ab\rho\sigma_{Y_1}\sigma_{Y_2}) aY1+bY2N(aμY1+bμY2,a2σY12+b2σY22+2abρσY1σY2)

步骤1.求出 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的联合密度函数
J ( y 1 , y 2 ) = ∥ ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ∥ = ∥ a 11 a 12 a 21 a 22 ∥ = a 11 a 22 − a 12 a 21 J(y_1,y_2)=\begin{Vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{Vmatrix} =\begin{Vmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{Vmatrix}=a_{11}a_{22}-a_{12}a_{21} J(y1,y2)=y1x1y1x2y2x1y2x2=a11a21a12a22=a11a22a12a21
y 1 = a 12 x 2 − a 22 x 1 a 12 a 21 − a 22 a 11 y 2 = a 11 x 2 − a 21 x 1 a 22 a 11 − a 21 a 12 f X 1 X 2 ( x 1 , x 2 ) = J − 1 ( y 1 , y 2 ) ⋅ f Y 1 Y 2 ( a 12 x 2 − a 22 x 1 a 12 a 21 − a 22 a 11 , a 11 x 2 − a 21 x 1 a 22 a 11 − a 21 a 12 ) 把 题 目 的 中 参 数 代 入 : = 1 a 11 a 22 − a 12 a 21 ⋅ 1 2 π e x p [ − ( ( y 1 ) 2 1 − 2 1 2 y 1 y 2 1 2 + ( y 2 ) 2 2 ) ] = 1 a 11 a 22 − a 12 a 21 ⋅ 1 2 π e x p [ − ( ( a 12 x 2 − a 22 x 1 a 12 a 21 − a 22 a 11 ) 2 − ( a 12 x 2 − a 22 x 1 a 12 a 21 − a 22 a 11 ) ( a 11 x 2 − a 21 x 1 a 22 a 11 − a 21 a 12 ) + ( a 11 x 2 − a 21 x 1 a 22 a 11 − a 21 a 12 ) 2 2 ) ] \begin{aligned} y_1&=\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}}\\ y_2&=\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}}\\ f_{X_1X_2}(x_1,x_2)&=J^{-1}(y_1,y_2)\cdot f_{Y_1Y_2}(\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}},\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})\\ 把题目的中参数代&入:\\ &=\frac{1}{a_{11}a_{22}-a_{12}a_{21}}\cdot\frac{1}{2\pi}exp{\left [-\left( \frac{(y_1)^2}{1}-\frac{2\frac{1}{\sqrt2} y_1 y_2}{1\sqrt2}+ \frac{(y_2)^2}{2}\right)\right]}\\ &=\frac{1}{a_{11}a_{22}-a_{12}a_{21}}\cdot\frac{1}{2\pi}exp{\left [-\left( (\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}})^2- (\frac{a_{12}x_2-a_{22}x_1}{a_{12}a_{21}-a_{22}a_{11}})(\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})+ \frac{(\frac{a_{11}x_2-a_{21}x_1}{a_{22}a_{11}-a_{21}a_{12}})^2}{2}\right)\right]}\\ \end{aligned} y1y2fX1X2(x1,x2)=a12a21a22a11a12x2a22x1=a22a11a21a12a11x2a21x1=J1(y1,y2)fY1Y2(a12a21a22a11a12x2a22x1,a22a11a21a12a11x2a21x1):=a11a22a12a2112π1exp[(1(y1)212 22 1y1y2+2(y2)2)]=a11a22a12a2112π1exp[((a12a21a22a11a12x2a22x1)2(a12a21a22a11a12x2a22x1)(a22a11a21a12a11x2a21x1)+2(a22a11a21a12a11x2a21x1)2)]
步骤2.求 f X 1 ( x 1 ) 和 f X 2 ( x 2 ) f_{X_1}(x_1)和f_{X_2}(x_2) fX1(x1)fX2(x2)
f X 1 = 1 2 π a 11 2 σ Y 1 2 + a 12 2 σ Y 2 2 + 2 a 11 a 12 ρ σ Y 1 σ Y 2 e x p [ − x 1 − ( a 11 μ Y 1 + a 12 μ Y 2 ) 2 ( a 11 2 σ Y 1 2 + a 12 2 σ Y 2 2 + 2 a 11 a 12 ρ σ Y 1 σ Y 2 ) ] = 1 2 π a 11 2 + 2 a 12 2 + 2 a 11 a 12 e x p [ − x 1 2 ( a 11 2 + a 12 2 ⋅ 2 + 2 a 11 a 12 ) ] f X 2 = 1 2 π a 21 2 σ Y 1 2 + a 22 2 σ Y 2 2 + 2 a 21 a 22 ρ σ Y 1 σ Y 2 e x p [ − x 2 − ( a 21 μ Y 1 + a 22 μ Y 2 ) 2 ( a 21 2 σ Y 1 2 + a 22 2 σ Y 2 2 + 2 a 21 a 22 ρ σ Y 1 σ Y 2 ) ] = 1 2 π a 21 2 + 2 a 22 2 + 2 a 21 a 22 e x p [ − x 2 2 ( a 21 2 + a 22 2 ⋅ 2 + 2 a 21 a 22 ) ] f X 1 f X 2 = 1 2 π a 11 2 + 2 a 12 2 + 2 a 11 a 12 a 21 2 + 2 a 22 2 + 2 a 21 a 22 e x p [ − x 1 2 ( a 11 2 + a 12 2 ⋅ 2 + 2 a 11 a 12 ) − x 2 2 ( a 21 2 + a 22 2 ⋅ 2 + 2 a 21 a 22 ) ] \begin{aligned} f_{X_1}&=\frac1{\sqrt{2\pi}\sqrt{a_{11}^2\sigma_{Y_1}^2+a_{12}^2\sigma_{Y_2}^2+2a_{11}a_{12}\rho\sigma_{Y_1}\sigma_{Y_2}}}exp\left[ -\frac{x_1-(a_{11}\mu_{Y_1}+a_{12}\mu_{Y_2})}{2(a_{11}^2\sigma_{Y_1}^2+a_{12}^2\sigma_{Y_2}^2+2a_{11}a_{12}\rho\sigma_{Y_1}\sigma_{Y_2})}\right]\\ &=\frac1{\sqrt{2\pi}\sqrt{a_{11}^2+2a_{12}^2+2a_{11}a_{12}}}exp\left[ -\frac{x_1}{2(a_{11}^2+a_{12}^2\cdot2+2a_{11}a_{12})}\right]\\ f_{X_2}&=\frac1{\sqrt{2\pi}\sqrt{a_{21}^2\sigma_{Y_1}^2+a_{22}^2\sigma_{Y_2}^2+2a_{21}a_{22}\rho\sigma_{Y_1}\sigma_{Y_2}}}exp\left[ -\frac{x_2-(a_{21}\mu_{Y_1}+a_{22}\mu_{Y_2})}{2(a_{21}^2\sigma_{Y_1}^2+a_{22}^2\sigma_{Y_2}^2+2a_{21}a_{22}\rho\sigma_{Y_1}\sigma_{Y_2})}\right]\\ &=\frac1{\sqrt{2\pi}\sqrt{a_{21}^2+2a_{22}^2+2a_{21}a_{22}}}exp\left[ -\frac{x_2}{2(a_{21}^2+a_{22}^2\cdot2+2a_{21}a_{22})}\right]\\ f_{X1}f_{X_2}&=\frac1{2\pi\sqrt{a_{11}^2+2a_{12}^2+2a_{11}a_{12}}\sqrt{a_{21}^2+2a_{22}^2+2a_{21}a_{22}}}exp\left[ -\frac{x_1}{2(a_{11}^2+a_{12}^2\cdot2+2a_{11}a_{12})}-\frac{x_2}{2(a_{21}^2+a_{22}^2\cdot2+2a_{21}a_{22})}\right] \end{aligned} fX1fX2fX1fX2=2π a112σY12+a122σY22+2a11a12ρσY1σY2 1exp[2(a112σY12+a122σY22+2a11a12ρσY1σY2)x1(a11μY1+a12μY2)]=2π a112+2a122+2a11a12 1exp[2(a112+a1222+2a11a12)x1]=2π a212σY12+a222σY22+2a21a22ρσY1σY2 1exp[2(a212σY12+a222σY22+2a21a22ρσY1σY2)x2(a21μY1+a22μY2)]=2π a212+2a222+2a21a22 1exp[2(a212+a2222+2a21a22)x2]=2πa112+2a122+2a11a12 a212+2a222+2a21a22 1exp[2(a112+a1222+2a11a12)x12(a212+a2222+2a21a22)x2]
根据题意要求,即标准的独立的二元正太分布,则标准差为1, ρ = 0 \rho=0 ρ=0,整理后得到如下等式:
a 11 a 22 − a 12 a 21 = 1 a 11 2 + 2 a 12 2 + 2 a 11 a 12 = 1 a 21 2 + 2 a 22 2 + 2 a 21 a 22 = 1 2 a 12 a 22 + a 12 a 21 + a 11 a 22 + a 11 a 21 = 0 \begin{aligned} a_{11}a_{22}-a_{12}a_{21}=1\\ a_{11}^2+2a_{12}^2+2a_{11}a_{12}=1\\a_{21}^2+2a_{22}^2+2a_{21}a_{22}=1\\ 2a_{12}a_{22}+a_{12}a_{21}+a_{11}a_{22}+a_{11}a_{21}=0 \end{aligned} a11a22a12a21=1a112+2a122+2a11a12=1a212+2a222+2a21a22=12a12a22+a12a21+a11a22+a11a21=0
a 11 = 1 , a 12 = 0 , a 21 = − 1 , a 22 = 1 a_{11}=1 ,a_{12}=0 ,a_{21}=-1,a_{22}=1 a11=1,a12=0,a21=1,a22=1
当然这并不是的解。解可有很多,满足上边4个等式即可

题目58

如果 X 1 X_1 X1 X 2 X_2 X2的联合分布是二元正态的,则 Y 1 = a 1 X 1 + b 1 , Y 2 = a 2 X 2 + b 2 Y_1=a_1X_1+b_1,Y_2=a_2X_2+b_2 Y1=a1X1+b1,Y2=a2X2+b2的联合分布也是二元正态的

解题思路

根据线性变换的雅可比行列式进行转换
J ( x 1 , x 2 ) = ∥ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 ∥ = ∥ a 1 0 0 a 2 ∥ = a 1 a 2 J(x_1,x_2)=\begin{Vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{Vmatrix} =\begin{Vmatrix} a_{1} & 0\\ 0 & a_{2} \end{Vmatrix}=a_1a_2 J(x1,x2)=x1y1x1y2x2y1x2y2=a100a2=a1a2
x 1 = y 1 − b 1 a 1 , x 2 = y 2 − b 2 a 2 x_1=\frac{y_1-b_1}{a_1},x_2=\frac{y_2-b_2}{a_2} x1=a1y1b1,x2=a2y2b2
f X 1 X 2 ( x 1 , x 2 ) = 1 2 π σ X 1 σ X 2 1 − ρ 2 e x p [ − 1 2 ( 1 − ρ 2 ) ( ( x 1 − μ X 1 ) 2 σ X 1 2 − 2 ρ ( x 1 − μ X 1 ) ( x 2 − μ X 2 ) σ X 1 σ X 2 + ( x 2 − μ X 2 ) 2 σ X 2 2 ) ] f_{X_1X_2}(x_1,x_2)=\frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(x_1-\mu_{X_1})^2}{\sigma_{X_1}^2}-\frac{2\rho(x_1-\mu_{X_1})(x_2-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}+ \frac{(x_2-\mu_{X_2})^2}{\sigma_{X_2}^2}\right)\right]} fX1X2(x1,x2)=2πσX1σX21ρ2 1exp[2(1ρ2)1(σX12(x1μX1)2σX1σX22ρ(x1μX1)(x2μX2)+σX22(x2μX2)2)]
f Y 1 Y 2 ( y 1 , y 2 ) = f X 1 X 2 ( y 1 − b 1 a 1 , y 2 − b 2 a 2 ) ⋅ ∣ J ∣ − 1 = 1 a 1 a 2 1 2 π σ X 1 σ X 2 1 − ρ 2 exp ⁡ [ − 1 2 ( 1 − ρ 2 ) ( ( y 1 − b 1 a 1 − μ X 1 ) 2 σ X 1 2 − 2 ρ ( y 1 − b 1 a 1 − μ X 1 ) ( y 2 − b 2 a 2 − μ X 2 ) σ X 1 σ X 2 + ( y 2 − b 2 a 2 − μ X 2 ) 2 σ X 2 2 ) ] = 1 2 π a 1 σ X 1 a 2 σ X 2 1 − ρ 2 exp ⁡ [ − 1 2 ( 1 − ρ 2 ) ( ( y 1 − ( b 1 + a 1 μ X 1 ) ) 2 ( a 1 σ X 1 ) 2 − 2 ρ ( y 1 − ( b 1 + a 1 μ X 1 ) ) ( y 2 − ( b 2 + a 2 μ X 2 ) ) a 1 σ X 1 a 2 σ X 2 + ( y 2 + ( b 2 + a 2 μ X 2 ) ) 2 ( a 2 σ X 2 ) 2 ) ] \begin{aligned} f_{Y_1Y_2}(y_1,y_2)&=f_{X_1X_2}(\frac{y_1-b_1}{a_1},\frac{y_2-b_2}{a_2})\cdot|J|^{-1}\\ &=\frac{1}{a_1a_2}\frac{1}{2\pi\sigma_{X_1}\sigma_{X_2}\sqrt{1-\rho^2}}\exp{\left [ -\frac{1}{2(1-\rho^2)}\left( \frac{(\frac{y_1-b_1}{a_1}-\mu_{X_1})^2}{\sigma_{X_1}^2}-\frac{2\rho(\frac{y_1-b_1}{a_1}-\mu_{X_1})(\frac{y_2-b_2}{a_2}-\mu_{X_2})}{\sigma_{X_1}\sigma_{X_2}}+ \frac{(\frac{y_2-b_2}{a_2}-\mu_{X_2})^2}{\sigma_{X_2}^2}\right)\right]}\\ &=\frac{1}{2\pi a_1\sigma_{X_1}a_2\sigma_{X_2}\sqrt{1-\rho^2}}\exp\left[ -\frac{1}{2(1-\rho^2)}\left(\frac{(y_1-(b_1+a_1\mu_{X_1}))^2}{(a_1\sigma_{X_1})^2}-\frac{2\rho(y_1-(b_1+a_1\mu_{X_1}))(y_2-(b_2+a_2\mu_{X_2}))}{a_1\sigma_{X_1}a_2\sigma_{X_2}}+\frac{(y_2+(b_2+a_2\mu_{X_2}))^2}{(a_2\sigma_{X_2})^2}\right)\right] \end{aligned} fY1Y2(y1,y2)=fX1X2(a1y1b1,a2y2b2)J1=a1a212πσX1σX21ρ2 1exp[2(1ρ2)1(σX12(a1y1b1μX1)2σX1σX22ρ(a1y1b1μX1)(a2y2b2μX2)+σX22(a2y2b2μX2)2)]=2πa1σX1a2σX21ρ2 1exp[2(1ρ2)1((a1σX1)2(y1(b1+a1μX1))2a1σX1a2σX22ρ(y1(b1+a1μX1))(y2(b2+a2μX2))+(a2σX2)2(y2+(b2+a2μX2))2)]
令, μ Y 1 = b 1 + a 1 μ X 1 , μ Y 2 = b 2 + a 2 μ X 2 , σ Y 1 = a 1 σ X 1 , σ Y 2 = a 2 σ X 2 \mu_{Y_1}=b_1+a_1\mu_{X_1},\mu_{Y_2}=b_2+a_2\mu_{X_2},\sigma_{Y_1}=a_1\sigma_{X_1},\sigma_{Y_2}=a_2\sigma_{X_2} μY1=b1+a1μX1,μY2=b2+a2μX2,σY1=a1σX1,σY2=a2σX2则:
( Y 1 , Y 2 ) ∼ N ( μ Y 1 , μ Y 2 , σ X 2 2 , σ X 2 2 , ρ ) (Y_1,Y_2)\sim N(\mu_{Y_1},\mu_{Y_2},\sigma_{X_2}^2,\sigma_{X_2}^2,\rho) (Y1,Y2)N(μY1,μY2,σX22,σX22,ρ)

题目59

如果 X 1 X_1 X1 X 2 X_2 X2是独立的标准正态随机变量,证明: Y 1 Y_1 Y1 Y 2 Y_2 Y2的联合分布是二元正态的
Y 1 = a 11 X 1 + a 12 X 2 + b 1 Y 2 = a 21 X 1 + a 22 X 2 + b 2 \begin{aligned} Y_1=a_{11}X_1+a_{12}X_2+b_1\\ Y_2=a_{21}X_1+a_{22}X_2+b_2 \end{aligned} Y1=a11X1+a12X2+b1Y2=a21X1+a22X2+b2

解题思路

令:
Z 1 = a 11 X 1 + a 12 X 2 Z 2 = a 21 X 1 + a 22 X 2 \begin{aligned} Z_1=a_{11}X_1+a_{12}X_2\\ Z_2=a_{21}X_1+a_{22}X_2\\ \end{aligned} Z1=a11X1+a12X2Z2=a21X1+a22X2
则有:
Y 1 = Z 1 + b 1 Y 2 = Z 2 + b 2 \begin{aligned} Y_1=Z_1+b_1\\ Y_2=Z_2+b_2 \end{aligned} Y1=Z1+b1Y2=Z2+b2
如果X_1和X_2是标准正态随机变量则他们的联合分布是二元正态的即:
( X 1 , X 2 ) ∼ N ( 0 , 0 , 1 , 1 , 0 ) (X_1,X_2)\sim N(0,0,1,1,0) (X1,X2)N(0,0,1,1,0)
二元正态随机变量的线性组合依然是二元正态的即:
( Z 1 , Z 2 ) (Z_1,Z_2) (Z1,Z2)是二元正态的
再根据58题的结果即可以证明 ( Y 1 , Y 2 ) (Y_1,Y_2) (Y1,Y2)也是二元正态的(线性变换)

题目60

利用上一题的结果,描述构造由独立伪随机均匀变量生成具有二元正态分布的伪随机变量的方法

解题思路

step1.采用Box Muller方法由两个均匀分布 ( u , v ) (u,v) (u,v),得到两个独立的正态分布:
z 1 = − 2 l o g u c o s 2 π v z 2 = − 2 l o g u s i n 2 π z_1=\sqrt{-2logu}cos2\pi v\\ z_2=\sqrt{-2logu}sin2\pi z1=2logu cos2πvz2=2logu sin2π
step2.利用59题的结果将得到的两个正态分布样本进行变量生成的 ( y 1 , y 2 ) (y_1,y_2) (y1,y2)即满足二元正态分布。

题目61

X X X Y Y Y是具有联合分布的连续随机变量,求 U = a + b X U=a+bX U=a+bX V = c + d Y V=c+dY V=c+dY的联合分布密度的表达式

解:

令(X,Y)的联合密度为 f X Y ( x , y ) f_{XY}(x,y) fXY(x,y)
利用雅可比行列式 f U V ( u , v ) = 1 J ( x , y ) f X Y ( U − 1 , V − 1 ) f_{UV}(u,v)=\frac{1}{J(x,y)}f_{XY}(U^{-1},V^{-1}) fUV(u,v)=J(x,y)1fXY(U1,V1)

J ( x , y ) = ∥ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∥ = ∥ b 0 0 d ∥ = b d J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} b & 0\\ 0 & d \end{Vmatrix}=bd J(x,y)=xuxvyuyv=b00d=bd
所以答案:
f U V ( u , v ) = 1 b d f X Y ( u − a b , v − c d ) f_{UV}(u,v)=\frac{1}{bd}f_{XY}(\frac{u-a}{b},\frac{v-c}{d}) fUV(u,v)=bd1fXY(bua,dvc)

题目62

X X X Y Y Y是独立标准正态随机变量,求 P ( X 2 + Y 2 ≤ 1 ) P(X^2+Y^2\leq 1) P(X2+Y21)

解:

转化为极坐标:
f R Θ ( r , θ ) = r f X Y ( r cos ⁡ θ , r sin ⁡ θ ) = 1 2 π r e − r 2 2 \begin{aligned} f_{R\Theta}(r,\theta)&=rf_{XY}(r\cos\theta,r\sin\theta)\\ &=\frac{1}{2\pi}re^{-\frac{r^2}{2}} \end{aligned} fRΘ(r,θ)=rfXY(rcosθ,rsinθ)=2π1re2r2

根据条件 X 2 + Y 2 ≤ 1 X^2+Y^2\leq 1 X2+Y21,即极坐标下 r ≤ 1 r\leq1 r1

P ( X 2 + Y 2 ≤ 1 ) = P ( r ≤ 1 ) = ∫ 0 2 π ∫ 0 1 1 2 π r e − r 2 2 d r d θ = ∫ 0 2 π d θ ∫ 0 1 1 2 π r e − r 2 2 d r = 2 π ⋅ 1 2 π ∫ 0 1 r e − r 2 2 d r = ∫ 0 1 e − r 2 2 d r 2 2 令 u = r 2 2 = ∫ 0 1 2 e − u d u = 1 − e − 1 2 \begin{aligned} P(X^2+Y^2\leq 1)&=P(r\leq1)\\ &=\int_0^{2\pi}\int_0^1\frac{1}{2\pi}re^{-\frac{r^2}{2}}drd\theta\\ &=\int_0^{2\pi}d\theta\int_0^1\frac{1}{2\pi}re^{-\frac{r^2}{2}}dr\\ &=2\pi\cdot \frac1{2\pi}\int_0^1re^{-\frac{r^2}{2}}dr\\ &=\int_0^1e^{-\frac{r^2}{2}}d\frac{r^2}{2}\\ 令u=\frac{r^2}{2}\\ &=\int_0^\frac12e^{-u}du\\ &=1-e^{-\frac12} \end{aligned} P(X2+Y21)u=2r2=P(r1)=02π012π1re2r2drdθ=02πdθ012π1re2r2dr=2π2π101re2r2dr=01e2r2d2r2=021eudu=1e21

题目63

X X X Y Y Y是具有联合分布的连续随机变量
a.讨论 X + Y X+Y X+Y X − Y X-Y XY的联合密度表达式
b.讨论 X Y XY XY X / Y X/Y X/Y的联合密度表达式
c.在 X X X Y Y Y独立的情况下,特殊表示a和b中的表达式

解:

a.令
U = X + Y , V = X − Y X = U + V 2 , Y = U − V 2 J ( x , y ) = ∥ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∥ = ∥ 1 1 1 − 1 ∥ = 2 f U V = 1 2 f X Y ( u + v 2 , u − v 2 ) \begin{aligned} U=X+Y,V=X-Y\\ X=\frac{U+V}{2}, Y=\frac{U-V}{2}\\ J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} 1 & 1\\ 1 & -1 \end{Vmatrix}=2\\ f_{UV}=\frac12f_{XY}(\frac{u+v}{2},\frac{u-v}2) \end{aligned} U=X+Y,V=XYX=2U+V,Y=2UVJ(x,y)=xuxvyuyv=1111=2fUV=21fXY(2u+v,2uv)
b.令
U = X Y , V = X / Y X = ( U V ) 1 2 Y = ( U V ) 1 2 J ( x , y ) = ∥ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∥ = ∥ y x − 1 x 2 1 x ∥ = 2 x y f U V = 2 ∣ x y ∣ f X Y ( ( x y ) 1 2 , ( x y ) 1 2 ) \begin{aligned} U=XY,V=X/Y\\ X=(UV)^{\frac12} Y=(\frac{U}V)^{\frac12} J(x,y)=\begin{Vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} y & x\\ -\frac1{x^2} &\frac1x \end{Vmatrix}=2\frac{x}y\\ f_{UV}=2|\frac xy|f_{XY}((xy)^\frac12,(\frac xy)^\frac12) \end{aligned} U=XY,V=X/YX=(UV)21Y=(VU)21J(x,y)=xuxvyuyv=yx21xx1=2yxfUV=2yxfXY((xy)21,(yx)21)

题目64

计算 X + Y X+Y X+Y X / Y X/Y X/Y的联合密度,其中 X X X Y Y Y是参数为 λ \lambda λ的独立指数随机变量,证明 X + Y X+Y X+Y X / Y X/Y X/Y独立的

解:

U = X + Y , V = X / Y ⇒ X = U V V + 1 , Y = U V + 1 U=X+Y,V=X/Y \Rightarrow X=\frac{UV}{V+1},Y=\frac{U}{V+1} U=X+Y,V=X/YX=V+1UV,Y=V+1U

证明是独立需要证明: f U ( u ) ⋅ f V ( v ) = f U V ( u , v ) f_U(u)\cdot f_V(v)=f_{UV}(u,v) fU(u)fV(v)=fUV(u,v)

有:
J ( x , y ) = ∥ ∂ u ∂ x ∂ u ∂ y ∂ v ∂ x ∂ v ∂ y ∥ = ∥ 1 1 1 y − x y 2 ∥ = − x − y y 2 ∣ J ( x , y ) ∣ − 1 = y 2 x + y = u ( v + 1 ) 2 \begin{aligned} J(x,y)&=\begin{Vmatrix}\\ \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{Vmatrix} =\begin{Vmatrix} 1 & 1\\ \frac1y & -\frac x{y^2} \end{Vmatrix}=-\frac{x-y}{y^2}\\ |J(x,y)|^{-1} &=\frac{y^2}{x+y}=\frac{u}{(v+1)^2} \end{aligned} J(x,y)J(x,y)1=xuxvyuyv=1y11y2x=y2xy=x+yy2=(v+1)2u
f U V ( u , v ) = ∣ J ( x , y ) ∣ − 1 f X Y ( u v v + 1 , u v + 1 ) = u ( v + 1 ) 2 ⋅ λ e − λ u v v + 1 ⋅ λ e − λ u v + 1 = u ( v + 1 ) 2 λ 2 e − λ u \begin{aligned} f_{UV}(u,v)&=|J(x,y)|^{-1}f_{XY}(\frac{uv}{v+1},\frac{u}{v+1})\\ &=\frac{u}{(v+1)^2} \cdot \lambda e^{-\lambda \frac{uv}{v+1} } \cdot \lambda e^{-\lambda \frac{u}{v+1}}\\ &=\frac{u}{(v+1)^2}\lambda^2e^{-\lambda u} \end{aligned} fUV(u,v)=J(x,y)1fXY(v+1uv,v+1u)=(v+1)2uλeλv+1uvλeλv+1u=(v+1)2uλ2eλu
接下来,分别求 f U ( u ) 和 f V ( v ) f_U(u)和f_V(v) fU(u)fV(v)
f U ( u ) = ∫ − ∞ ∞ f X ( x ) f Y ( u − x ) d x = λ 2 u e − λ u f V ( v ) = ∫ − ∞ ∞ ∣ x ∣ f X ( x ) f Y ( x v ) d x = λ 2 ∫ − ∞ ∞ x e − λ x ( 1 + v ) d x 令 a = − λ ( 1 + v ) , 则 积 分 下 限 为 0 , 上 限 为 ∞ = λ 2 ∫ 0 ∞ x e a x d x = λ 2 1 a 2 ( a x − 1 ) e a x ∣ 0 ∞ = 1 1 + v 2 \begin{aligned} f_U(u)&=\int_{-\infty}^{\infty}f_X(x)f_Y(u-x)dx=\lambda^2ue^{-\lambda u}\\ f_V(v)&=\int_{-\infty}^{\infty}|x|f_X(x)f_Y(xv)dx\\ &=\lambda^2\int_{-\infty}^{\infty}xe^{-\lambda x(1+v)}dx\\ 令a=-\lambda(1+v),则积分下限为0,上限为\infty\\ &=\lambda^2\int_0^{\infty}xe^{ax}dx\\ &=\lambda^2\frac1{a^2}(ax-1)e^{ax} \bigg |_0^{\infty}\\ &=\frac1{1+v^2} \end{aligned} fU(u)fV(v)a=λ(1+v),0=fX(x)fY(ux)dx=λ2ueλu=xfX(x)fY(xv)dx=λ2xeλx(1+v)dx=λ20xeaxdx=λ2a21(ax1)eax0=1+v21
所以 f U ( u ) ⋅ f V ( v ) = f U V ( u , v ) f_U(u)\cdot f_V(v)=f_{UV}(u,v) fU(u)fV(v)=fUV(u,v)是成立的,U和V是独立的。

题目65

假定系统元件串联在一起,且元件的寿命为参数为 λ i \lambda_i λi独立指数随机变量,证明系统寿命服从参数是 ∑ λ i \sum\lambda_i λi的指数分布。

解:

参考书中例题
V V V代表系统整体寿命,根据书中公式有
f V ( v ) = n f ( v ) [ 1 − F ( v ) ] n − 1 其 中 F ( v ) = 1 − e − λ v = n λ e − λ v ( e − λ v ) n − 1 = n λ e − n λ v \begin{aligned} f_V(v)&=nf(v)[1-F(v)]^{n-1}\\ 其中F(v)=1-e^{-\lambda v}\\ &=n\lambda e^{-\lambda v}(e^{-\lambda v})^{n-1}\\ &=n\lambda e^{-n\lambda v} \end{aligned} fV(v)F(v)=1eλv=nf(v)[1F(v)]n1=nλeλv(eλv)n1=nλenλv

题目66

下图系统中的每一个元件寿命都独立的服从参数为 λ \lambda λ的指数分布,计算系统寿命的cdf和密度
图不画了,解释一下,6个元件分成3组,组内两个元件串连,3组并联

解:

令串联部分的寿命分布为 F V ( t ) F_V(t) FV(t)
F V ( t ) = 1 − [ 1 − e − λ t ] 2 = 1 − e − 2 λ t F_V(t)=1-[1-e^{-\lambda t}]^2=1-e^{-2\lambda t} FV(t)=1[1eλt]2=1e2λt
令整体系统寿命分布为 F U ( t ) F_U(t) FU(t)
F U ( t ) = [ F V ( v ) ] 3 = ( 1 − e − 2 λ t ) 3 F_U(t)=[F_V(v)]^3=(1-e^{-2\lambda t})^3 FU(t)=[FV(v)]3=(1e2λt)3
求上式求导
f ( t ) = 6 λ e − 2 λ t ( 1 − e − 2 λ t ) 2 f(t)=6\lambda e^{-2\lambda t}(1-e^{-2\lambda t})^2 f(t)=6λe2λt(1e2λt)2

题目67

卡片含有n个芯片和一个纠错元件,这样如果只有一个芯片失效,卡片仍能正常工作;如果有两个或两个以上的芯片失效,卡片将不能正常工作。如果每个芯片的寿命服从参数为 λ \lambda λ的指数分布,计算卡片寿命的密度函数。

解:


F A ( t ) F_A(t) FA(t)系统的寿命分布
F 0 ( t ) F_0(t) F0(t)所有芯片都没有失效的概率分布
F 1 ( t ) F_1(t) F1(t)只有一个芯片失效的概率分布
F ( t ) F(t) F(t)单一的一个芯片失效的概率分布
则有:
F A ( t ) = 1 − F 0 ( t ) − F ( t ) = 1 − ( 1 − F ( t ) ) n − n F ( t ) ( 1 − F ( t ) ) n − 1 = 1 − ( 1 − ( 1 − e − λ t ) ) n − n ( 1 − e − λ t ) ( 1 − ( 1 − e − λ t ) ) n − 1 = 1 − e − n λ t − n ( 1 − e − λ t ) e − ( n − 1 ) λ t = 1 − e − n λ t − n e − ( n − 1 ) λ t + n e − n λ t \begin{aligned} F_A(t)&=1-F_0(t)-F(t)\\ &=1-(1-F(t))^n-nF(t)(1-F(t))^{n-1}\\ &=1-(1-(1-e^{-\lambda t}))^n-n(1-e^{-\lambda t})(1-(1-e^{-\lambda t}))^{n-1}\\ &=1-e^{-n\lambda t} -n(1-e^{-\lambda t})e^{-(n-1)\lambda t}\\ &=1-e^{-n\lambda t}-ne^{-(n-1)\lambda t}+ne^{-n\lambda t} \end{aligned} FA(t)=1F0(t)F(t)=1(1F(t))nnF(t)(1F(t))n1=1(1(1eλt))nn(1eλt)(1(1eλt))n1=1enλtn(1eλt)e(n1)λt=1enλtne(n1)λt+nenλt
对上式求导则为密度函数
f A ( t ) = F A ′ ( t ) = − e − n λ t ⋅ − n λ − n e − ( n − 1 ) λ t ⋅ − ( n − 1 ) λ + n e − n λ t ⋅ − n λ = n λ e − n λ t + n ( n − 1 ) λ e − ( n − 1 ) λ t − n ⋅ n λ e − n λ t = n ( n − 1 ) λ e − ( n − 1 ) λ t + n ( 1 − n ) λ e − n λ t = n ( n − 1 ) λ ( e − ( n − 1 ) λ t − e − n λ t ) \begin{aligned} f_A(t)&=F_A^{'}(t)\\ &=-e^{-n\lambda t}\cdot -n\lambda -ne^{-(n-1)\lambda t} \cdot -(n-1)\lambda +ne^{-n\lambda t}\cdot -n\lambda\\ &=n\lambda e^{-n\lambda t}+n(n-1)\lambda e^{-(n-1)\lambda t}-n\cdot n\lambda e^{-n\lambda t}\\ &=n(n-1)\lambda e^{-(n-1)\lambda t}+n(1-n)\lambda e^{-n\lambda t}\\ &=n(n-1)\lambda ( e^{-(n-1)\lambda t}- e^{-n\lambda t}) \end{aligned} fA(t)=FA(t)=enλtnλne(n1)λt(n1)λ+nenλtnλ=nλenλt+n(n1)λe(n1)λtnnλenλt=n(n1)λe(n1)λt+n(1n)λenλt=n(n1)λ(e(n1)λtenλt)

题目68

U 1 U_1 U1 U 2 U_2 U2 U 3 U_3 U3是独立的均匀随机变量
a.计算 U ( 1 ) U_{(1)} U(1) U ( 2 ) U_{(2)} U(2) U ( 3 ) U_{(3)} U(3)的联合密度
b.在一英里的高速公路上,独立且随机地建造三个加油站,任意两个加油站之间的距离不小于 1 3 \frac13 31英里的概率是多少

解:

a.模拟对最水值和最小值联合密度的计算方法
U = U ( 1 ) , V = U ( 2 ) , W = U ( 3 ) U=U_{(1)},V=U_{(2)},W=U_{(3)} U=U(1),V=U(2),W=U(3)
f ( u , v , w ) = n ! 1 ! 1 ! 1 ! f ( u ) f ( v ) f ( w ) 代 入 n = 3 , f ( u ) = f ( v ) = f ( w ) = 1 f ( u , v , w ) = 6 , u ≤ v ≤ w \begin{aligned} f(u,v,w)&=\frac{n!}{1!1!1!}f(u)f(v)f(w)\\ 代入n=3,f(u)=f(v)=f(w)=1\\ f(u,v,w)&=6,u\leq v\leq w \end{aligned} f(u,v,w)n=3,f(u)=f(v)=f(w)=1f(u,v,w)=1!1!1!n!f(u)f(v)f(w)=6,uvw
b.在一英里的高速公路上,独立且随机地建造三个加油站,任意两个加油站之间的距离不小于 1 3 \frac13 31英里的概率是多少
我们可以认为3个加油站的位置服从 U ( 0 , 1 ) U(0,1) U(0,1),令X为第1个加油站的位置,Y为第二个加油站的位置Z为第三个加油站的位置,则X,Y,Z是3个均匀分布的顺序统计量,则 f X Y Z ( x , y , z ) = 6 ( 根 据 a 问 题 的 结 果 ) f_{XYZ}(x,y,z)=6(根据a问题的结果) fXYZ(x,y,z)=6(a)
任意两个加油站之间的距离大于 1 3 \frac13 31则必须有 Y − X > 1 3 并 且 Z − Y > 1 3 Y-X>\frac13 并且 Z-Y>\frac13 YX>31ZY>31
P ( Y − X > 1 3 且 Z − Y > 1 3 ) = ∫ 0 1 3 ∫ x + 1 3 2 3 ∫ y + 1 3 1 f ( x , y , z ) d z d y d x = ∫ 0 1 3 ∫ x + 1 3 2 3 4 − 6 y d y = ∫ 0 1 3 1 3 − 2 x − 3 x 2 d x = 1 27 \begin{aligned} P(Y-X>\frac13且 Z-Y>\frac13)&=\int_0^\frac13\int_{x+\frac13}^{\frac23}\int_{y+\frac13}^1f(x,y,z)dzdydx\\ &=\int_0^\frac13\int_{x+\frac13}^{\frac23}4-6ydy\\ &=\int_0^\frac13\frac13-2x-3x^2dx\\ &=\frac1{27} \end{aligned} P(YX>31ZY>31)=031x+3132y+311f(x,y,z)dzdydx=031x+313246ydy=031312x3x2dx=271
积分上下限是结合 0 &lt; x &lt; y &lt; z &lt; 1 0&lt;x&lt;y&lt;z&lt;1 0<x<y<z<1 y − x &gt; 1 3 且 z − t &gt; 1 3 y-x&gt;\frac13且z-t&gt;\frac13 yx>31zt>31得出

题目69

计算 n n n个独立威布尔随机变量最小值的密度,每个变量具有密度:
f ( t ) = β α − β t − β − 1 e − ( t / α ) β , t ≥ 0 f(t)=\beta\alpha^{-\beta}t^{-\beta-1}e^{-(t/\alpha)^{\beta}},t \geq 0 f(t)=βαβtβ1e(t/α)β,t0

解:

V V V代表 n n n个独立威布尔变量的最小值随机变量
根据3.7节中的公式
f V ( v ) = n f ( v ) [ 1 − F ( v ) ] n − 1 f_V(v)=nf(v)[1-F(v)]^{n-1} fV(v)=nf(v)[1F(v)]n1
其中:
f ( v ) = β α − β v − β − 1 e − ( v / α ) β f_(v)=\beta\alpha^{-\beta}v^{-\beta-1}e^{-(v/\alpha)^{\beta}} f(v)=βαβvβ1e(v/α)β
F ( v ) = 1 − e − ( v / α ) β F_(v)=1-e^{-(v/\alpha)^{\beta}} F(v)=1e(v/α)β
代入上式经计算结果如下:
f V ( v ) = n β α − β v β − 1 e − n ( v / α ) β f_V(v)=n\beta\alpha^{-\beta}v^{\beta-1}e^{-n(v/\alpha)^{\beta}} fV(v)=nβαβvβ1en(v/α)β

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值