数理统计与数据分析第三版习题 第4章

以下解题过程都是由互联网收集而来,并不保证正确,如有疑问可以留言讨论

题目1

证明:如果随机变量有界,即 ∣ X ∣ < M < ∞ |X|<M< \infty X<M<,那么 E ( X ) E(X) E(X)存在
解:
令随机变量的密度函数为 f ( x ) f_(x) f(x),判别期望存在的条件是 ∫ ∣ x ∣ f ( x ) d x < ∞ \int|x|f(x)dx<\infty xf(x)dx<为真则期望存在。
因为: 0 ≤ f ( x ) ≤ 1 且 ∣ x ∣ ≥ 0 0\leq f_(x)\leq 1且|x| \geq0 0f(x)1x0
所以: ∣ x ∣ f ( x ) ≤ ∣ x ∣ |x|f(x)\leq |x| xf(x)x ∫ ∣ x ∣ f ( x ) d x < ∫ ∣ x ∣ d x \int|x|f(x)dx<\int|x|dx xf(x)dx<xdx
∫ − M M ∣ x ∣ d x = M 2 ∫ ∣ x ∣ f ( x ) d x < ∫ ∣ x ∣ f ( x ) d x ∫ ∣ x ∣ f ( x ) d x < M 2 \int_{-M}^{M}|x|dx=M^2\\ \int|x|f(x)dx<\int|x|f(x)dx\\ \int|x|f(x)dx<M^2 MMxdx=M2xf(x)dx<xf(x)dxxf(x)dx<M2
所以期望存在

题目2

2.令 X X X具有矩生成函数 F ( x ) = 1 − x − α F(x)=1-x^{-\alpha} F(x)=1xα, x ≥ 1. x \geq1. x1.
a.对于使 E ( X ) E(X) E(X)存在的 α \alpha α值,计算 E ( X ) E(X) E(X).
b.对于使 V a r ( X ) Var(X) Var(X)存在的 α \alpha α值,计算 V a r ( X ) Var(X) Var(X).

解:
∵ F ( X ) = 1 − x − α ∴ f ( x ) = α x − α − 1 E ( X ) = ∫ 1 ∞ x f ( x ) d x = ∫ 1 ∞ x α x − α − 1 d x = ∫ 1 ∞ α x − α d x = α α − 1 E ( X 2 ) = ∫ 1 ∞ x 2 f ( x ) d x = ∫ 1 ∞ x 2 α x − α − 1 d x = α α − 2 V a r ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = α α − 2 − ( α α − 1 ) 2 \begin{aligned} \because F(X)&=1-x^{-\alpha} \therefore f(x) = \alpha x^{-\alpha -1}\\ E(X)&=\int_1^{\infty}xf(x)dx\\ &=\int_1^{\infty}x \alpha x^{-\alpha -1}dx\\ &=\int_1^{\infty} \alpha x^{-\alpha }dx\\ &=\frac\alpha{\alpha-1}\\ E(X^2)&=\int_1^{\infty}x^2f(x)dx\\ &=\int_1^{\infty}x^2\alpha x^{-\alpha -1}dx\\ &=\frac\alpha{\alpha-2}\\ \\ Var(X)&=E(X^2)-[E(X)]^2=\frac\alpha{\alpha-2}-(\frac\alpha{\alpha-1})^2 \end{aligned} F(X)E(X)E(X2)Var(X)=1xαf(x)=αxα1=1xf(x)dx=1xαxα1dx=1αxαdx=α1α=1x2f(x)dx=1x2αxα1dx=α2α=E(X2)[E(X)]2=α2α(α1α)2

题目3

计算第2章习题3中的 E ( X ) E(X) E(X) V a r ( X ) Var(X) Var(X)
原题如下:
下表为离散随机变量的累积分布函数,计算其频率函数。

kF(k)f(k)
000
10.10.1
20.30.2
30.70.4
40.80.1
51.00.2

其中 f ( k ) f(k) f(k)列是此题的答案。
解题
根据定义
E ( X ) = ∑ i x i p ( x i ) V a r ( X ) = ∑ i ( x i − μ ) 2 p ( x i ) , 其 中 μ = E ( X ) \begin{aligned} E(X)&=\sum_{i}x_ip(x_i)\\ Var(X)&=\sum_{i}(x_i-\mu)^2p(x_i),其中\mu=E(X) \end{aligned} E(X)Var(X)=ixip(xi)=i(xiμ)2p(xi)μ=E(X)
有:
E ( X ) = 0 ∗ 0 + 1 ∗ 0.1 + 2 ∗ 0.2 + 3 ∗ 0.4 + 4 ∗ 0.1 + 5 ∗ 0.2 = 3.1 V a r ( X ) = ( 0 − 3.1 ) 2 ∗ 0 + ( 1 − 3.1 ) 2 ∗ 0.1 + ( 2 − 3.1 ) 2 ∗ 0.2 + ( 3 − 3.1 ) 2 ∗ 0.4 + ( 4 − 3.1 ) 2 ∗ 0.1 + ( 5 − 3.1 ) 2 ∗ 0.2 = 1.49 \begin{aligned} E(X)&=0*0+1*0.1+2*0.2+3*0.4+4*0.1+5*0.2\\ &=3.1\\ Var(X)&=(0-3.1)^2*0+(1-3.1)^2*0.1+(2-3.1)^2*0.2+(3-3.1)^2*0.4+(4-3.1)^2*0.1+(5-3.1)^2*0.2\\ &=1.49 \end{aligned} E(X)Var(X)=00+10.1+20.2+30.4+40.1+50.2=3.1=(03.1)20+(13.1)20.1+(23.1)20.2+(33.1)20.4+(43.1)20.1+(53.1)20.2=1.49

题目4

如果 X X X是离散的均匀随机变量,即$P(X=k)=1/n $,其中 k = 1 , 2 , . . . , n k = 1,2,...,n k=1,2,...,n计算 E X ( X ) EX(X) EX(X) V a r ( X ) Var(X) Var(X)

根据离散期望定义 E ( X ) = ∑ i x i p ( x i ) E(X)=\sum_{i}x_ip(x_i) E(X)=ixip(xi)
E ( X ) = ∑ i = 1 n x i 1 n = n + 1 2 \begin{aligned} E(X)&=\sum_{i=1}^nx_i\frac1n\\ &=\frac{n+1}2 \end{aligned} E(X)=i=1nxin1=2n+1
根据方差计算公式: V a r ( X ) = E ( X 2 ) − [ E ( X ] 2 Var(X)=E(X^2)-[E(X]^2 Var(X)=E(X2)[E(X]2
V a r ( X ) = E ( X 2 ) − [ E ( X ] 2 = ∑ i = 1 n x i 2 1 n − ( n + 1 2 ) 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ⋅ 1 n − ( n + 1 ) 2 4 = ( n + 1 ) ( 2 n + 1 ) 6 − ( n + 1 ) 2 4 = n 2 − 1 12 \begin{aligned} Var(X)&=E(X^2)-[E(X]^2\\ &=\sum_{i=1}^nx_i^2\frac1n -(\frac{n+1}2)^2\\ &=\frac{n(n+1)(2n+1)}6 \cdot \frac1n - \frac{(n+1)^2}4\\ &=\frac{(n+1)(2n+1)}6 - \frac{(n+1)^2}4\\ &=\frac{n^2-1}{12} \end{aligned} Var(X)=E(X2)[E(X]2=i=1nxi2n1(2n+1)2=6n(n+1)(2n+1)n14(n+1)2=6(n+1)(2n+1)4(n+1)2=12n21
备注: ∑ i = 1 n x i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{i=1}^nx_i^2=\frac{n(n+1)(2n+1)}6 i=1nxi2=6n(n+1)(2n+1)

题目5

X X X具有密度
f ( x ) = 1 + α x 2 , − 1 ≤ x ≤ 1 − 1 ≤ α ≤ 1 f(x)=\frac{1+\alpha x}2,-1\leq x \leq1 \quad -1\leq \alpha \leq 1 f(x)=21+αx,1x11α1
计算 E ( X ) E(X) E(X) V a r ( X ) Var(X) Var(X)

首先必须满足 ∫ ∣ x ∣ f ( x ) d x < ∞ \int|x|f(x)dx < \infty xf(x)dx<
∫ ∣ x ∣ f ( x ) d x = ∫ − 1 1 ∣ x ∣ f ( x ) d x = ∫ − 1 0 − x f ( x ) d x + ∫ 0 1 x f ( x ) d x = ( 1 4 − α 6 ) + ( 1 4 + α 6 ) = 1 2 \begin{aligned} \int|x|f(x)dx&=\int_{-1}^1 |x|f(x)dx\\ &=\int_{-1}^0-xf(x)dx+\int_{0}^{1}xf(x)dx\\ &=(\frac14-\frac{\alpha}6)+(\frac14+\frac{\alpha}6)\\ &=\frac12 \end{aligned} xf(x)dx=11xf(x)dx=10xf(x)dx+01xf(x)dx=(416α)+(41+6α)=21
所有期望是存在的

E ( X ) = ∫ − 1 1 x f ( x ) d x = ∫ − 1 1 x 1 + α x 2 d x = 1 2 ( [ x 2 2 + α x 3 3 ] − 1 1 ) = α 3 V a r ( X ) = ∫ − 1 1 ( x − μ ) 2 f ( x ) d x = ∫ − 1 1 ( x − α 3 ) 2 ⋅ 1 + α x 2 d x = 1 2 ∫ − 1 1 ( α x 3 + ( 1 − 2 3 α 2 ) x 2 + ( α 3 9 − 2 3 α ) x + α 2 9 ) d x = 1 3 − α 2 9 \begin{aligned} E(X)&=\int_{-1}^1 xf(x)dx\\ &=\int_{-1}^1x\frac{1+\alpha x}{2}dx\\ &=\frac12 \bigg ( \bigg [\frac{x^2}2+\frac{\alpha x^3}{3}\bigg ]_{-1}^{1}\bigg)\\ &=\frac{\alpha}3 \\ Var(X)&=\int_{-1}^{1}(x-\mu)^2f(x)dx\\ &=\int_{-1}^{1}(x-\frac{\alpha}3)^2\cdot \frac{1+\alpha x}2dx\\ &=\frac12\int_{-1}^{1}(\alpha x^3+(1-\frac23{\alpha}^2)x^2+(\frac{{\alpha}^3}9-\frac23\alpha)x+\frac{{\alpha}^2}9)dx\\ &=\frac13-\frac{{\alpha}^2}9 \end{aligned} E(X)Var(X)=11xf(x)dx=11x21+αxdx=21([2x2+3αx3]11)=3α=11(xμ)2f(x)dx=11(x3α)221+αxdx=2111(αx3+(132α2)x2+(9α332α)x+9α2)dx=319α2

题目6

X X X是连续型随机变量,具有概率密度函数 f ( x ) = 2 x , 0 ≤ x ≤ 1 f(x)=2x,0\leq x \leq 1 f(x)=2x,0x1
a.计算E(X)
b.令 Y = X 2 Y=X^2 Y=X2,计算 Y Y Y的概率质量函数,并由其计算 E ( Y ) E(Y) E(Y).
c.利用4.1.1节的定理 4.1.1.1计算 E ( X 2 ) E(X^2) E(X2),并与 b b b中的答案来进行比较.
d.根据4.2节方差的定义计算 V a r ( x ) Var(x) Var(x),同时利用4.2节的定理4.2.2计算 V a r ( x ) Var(x) Var(x)
解:
a.计算E(X)
E ( X ) = ∫ 0 1 x f ( x ) d x = ∫ 0 1 x ⋅ 2 x d x = 2 3 \begin{aligned} E(X)&=\int_0^1 xf(x)dx\\ &=\int_0^1x\cdot2x dx\\ &=\frac23 \end{aligned} E(X)=01xf(x)dx=01x2xdx=32
b.令 Y = X 2 Y=X^2 Y=X2,计算 Y Y Y的概率质量函数,并由其计算 E ( Y ) E(Y) E(Y).
f Y ( y ) = f x ( y 1 2 ) ⋅ ( y 1 2 ) ′ = 2 ⋅ y 1 2 ⋅ 1 2 y − 1 2 = 1 E ( Y ) = ∫ 0 1 y ⋅ f Y ( y ) d y = ∫ 0 1 y d y = 1 2 \begin{aligned} f_Y(y)&=f_x(y^{\frac12})\cdot (y^{\frac12})^{'}\\ &=2\cdot y^{\frac12}\cdot \frac12 y^{-\frac12}\\ &=1\\ E(Y)&=\int_0^1y\cdot f_Y(y)dy\\ &=\int_0^1 y dy\\ &=\frac12 \end{aligned} fY(y)E(Y)=fx(y21)(y21)=2y2121y21=1=01yfY(y)dy=01ydy=21
c.利用4.1.1节的定理 4.1.1.1计算 E ( X 2 ) E(X^2) E(X2),并与 b b b中的答案来进行比较.
E ( X 2 ) = ∫ 0 1 x 2 f ( x ) d x = ∫ 0 1 x 2 ⋅ 2 x d x = 1 2 \begin{aligned} E(X^2)&=\int_0^1 x^2f(x)dx\\ &=\int_0^1x^2\cdot2x dx\\ &=\frac12 \end{aligned} E(X2)=01x2f(x)dx=01x22xdx=21
与b.中的答案一样。
d.根据4.2节方差的定义计算 V a r ( x ) Var(x) Var(x),同时利用4.2节的定理4.2.2计算 V a r ( x ) Var(x) Var(x)
按 定 义 计 算 V a r ( X ) = ∫ 0 1 ( x − μ ) 2 f ( x ) d x = ∫ 0 1 ( x − 2 3 ) ⋅ 2 x d x = ∫ 0 1 ( 2 x 3 + 8 9 x − 8 3 x 2 ) d x = 1 2 − 4 9 = 1 18 按 定 理 4.2.2 计 算 V a r ( x ) = E ( X 2 ) − [ E ( X ) ] 2 = ∫ 0 1 x 2 f ( x ) d x − ( 2 3 ) 2 = ∫ 0 1 2 x 3 d x − 4 9 = 1 2 − 4 9 = 1 18 \begin{aligned} 按定义计算\\ Var(X)&=\int_0^1(x-\mu)^2f(x)dx\\ &=\int_0^1(x-\frac23)\cdot 2x dx\\ &=\int_0^1 (2x^3+\frac89x-\frac83x^2)dx\\ &=\frac12-\frac49\\ &=\frac1{18}\\ 按定理4.2.2计算\\ Var(x)&=E(X^2)-[E(X)]^2\\ &=\int_0^1x^2f(x)dx - (\frac23)^2\\ &=\int_0^12x^3dx-\frac49\\ &=\frac12-\frac49\\ &=\frac1{18} \end{aligned} Var(X)4.2.2Var(x)=01(xμ)2f(x)dx=01(x32)2xdx=01(2x3+98x38x2)dx=2194=181=E(X2)[E(X)]2=01x2f(x)dx(32)2=012x3dx94=2194=181

题目7

X X X为离散型随机变量,可能取值为0,1,2对标的概率为 1 2 , 3 8 , 1 8 \frac12,\frac38,\frac18 21,83,81.
a.求 E ( X ) E(X) E(X)
解:
E ( X ) = 0 ∗ 1 2 + 1 ∗ 3 8 + 2 ∗ 1 8 = 5 8 \begin{aligned} E(X)&=0*\frac12+1*\frac38+2*\frac18\\ &=\frac58 \end{aligned} E(X)=021+183+281=85
b.令 Y = X 2 Y=X^2 Y=X2.求 Y Y Y的概率质量函数和期望
解:
先求出变量Y的分布,再利用随机变量期望的定义求出求出期望

Y014
P 1 2 \frac12 21 3 8 \frac38 83 1 8 \frac18 81

E ( Y ) = 0 ∗ 1 2 + 1 ∗ 3 8 + 4 ∗ 1 8 = 7 8 E(Y)=0*\frac12+1*\frac38+4*\frac18=\frac78 E(Y)=021+183+481=87

c.

题目24

证明:如果 X 1 . . . . . . X n X_1......X_n X1......Xn是具有联合分布的随机变量并且期望值为 E ( X i ) E(X_i) E(Xi), Y Y Y X i X_i Xi的线性组合, Y = a + Σ i = 1 n b i X i Y=a+\Sigma_{i=1}^{n}b_iX_i Y=a+Σi=1nbiXi,则 E ( Y ) = a + ∑ i = 1 n b i E ( X i ) E(Y)=a+\sum\limits_{i=1}^{n}b_iE(X_i) E(Y)=a+i=1nbiE(Xi)
解题思路
令n=2
E ( Y ) = ∑ x 1 ∑ x 2 ( a + b 1 x 1 + b 2 x 2 ) p ( x 1 , x 2 ) = a ∑ x 1 ∑ x 2 p ( x 1 , x 2 ) ⏟ 1 + b 1 ∑ x 1 ∑ x 2 x 1 p ( x 1 , x 2 ) ⏟ 2 + b 2 ∑ x 1 ∑ x 2 x 2 p ( x 1 , x 2 ) ⏟ 3 \begin{aligned} E(Y)&=\sum\limits_{x_1}\sum\limits_{x_2}(a+b_1x_1+b_2x_2)p(x_1,x_2)\\ &=\underbrace{a\sum\limits_{x_1}\sum\limits_{x_2}p(x_1,x_2)}_{1}+\underbrace{b_1\sum\limits_{x_1}\sum\limits_{x_2}x_1p(x_1,x_2)}_2+\underbrace{b_2\sum\limits_{x_1}\sum\limits_{x_2}x_2p(x_1,x_2)}_3 \end{aligned} E(Y)=x1x2(a+b1x1+b2x2)p(x1,x2)=1 ax1x2p(x1,x2)+2 b1x1x2x1p(x1,x2)+3 b2x1x2x2p(x1,x2)
其中:
a ∑ x 1 ∑ x 2 p ( x 1 , x 2 ) = a b 1 ∑ x 1 ∑ x 2 x 1 p ( x 1 , x 2 ) = b 1 E ( x 1 ) b 2 ∑ x 1 ∑ x 2 x 2 p ( x 1 , x 2 ) = b 2 E ( x 2 ) \begin{aligned} a\sum\limits_{x_1}\sum\limits_{x_2}p(x_1,x_2)&=a\\ b_1\sum\limits_{x_1}\sum\limits_{x_2}x_1p(x_1,x_2)&=b_1E(x_1)\\ b_2\sum\limits_{x_1}\sum\limits_{x_2}x_2p(x_1,x_2)&=b_2E(x_2) \end{aligned} ax1x2p(x1,x2)b1x1x2x1p(x1,x2)b2x1x2x2p(x1,x2)=a=b1E(x1)=b2E(x2)

题目29

证明:如果随机变量 X X X Y Y Y是独立的,那么 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
解题思路
根据公式
E ( X Y ) = ∬ x y f ( x , y ) d x d y = ∬ x y f ( x ) f ( y ) d x d y = ∫ x f ( x ) d x ⋅ ∫ y f ( y ) d y = E ( X ) ⋅ E ( Y ) \begin{aligned} E(XY)&=\iint xyf(x,y)dxdy\\ &=\iint xyf(x)f(y)dxdy\\ &=\int xf(x)dx \cdot \int yf(y)dy\\ &=E(X) \cdot E(Y) \end{aligned} E(XY)=xyf(x,y)dxdy=xyf(x)f(y)dxdy=xf(x)dxyf(y)dy=E(X)E(Y)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值