卡尔丹公式简明推导
对于方程
y3+py+q=0
y^3+py+q=0
y3+py+q=0
有经验的选手会联想到公式(不要问我为啥)
(u+v)3=u3+3uv2+3u2v+v3①
(u+v)^3=u³+3uv²+3u²v+v³ ①
(u+v)3=u3+3uv2+3u2v+v3①
①式可整理为如下形式
(u+v)3-3uv(u+v)-u3-v3=0
(u+v)^3-3uv(u+v)-u^3-v^3=0
(u+v)3-3uv(u+v)-u3-v3=0
令s=u+v,r=-3uv,j=-u³-v³则有
s3+rs+j=0
s³+rs+j=0
s3+rs+j=0
对照y³+py+q=0,那么有
p=-3uv②
p=-3uv②
p=-3uv②
q=-u3-v3③
q=-u³-v³③
q=-u3-v3③
y=u+v④
y=u+v④
y=u+v④
②左右同时立方,得到
p3=-27u3v3⑤
p³=-27u³v³⑤
p3=-27u3v3⑤
即
-u3v3=(p/3)3⑥
-u³v³=(p/3)^3 ⑥
-u3v3=(p/3)3⑥
③×v³得到
-u3v3-(v3)2=qv3⑦
-u³v³-(v³)²=qv³⑦
-u3v3-(v3)2=qv3⑦
将⑥代入⑦得到
(p/3)3-(v3)2=qv3⑧
(p/3)³-(v³)²=qv³⑧
(p/3)3-(v3)2=qv3⑧
⑧是一个关于v³的二次方程,那么可得v关于p,q的恒等式(略)
同理可得u关于p,q的恒等式。结合式④,即得卡尔丹公式(见上篇文章,此处略)。