卡尔丹公式简明推导

本文简明地推导了卡尔丹公式,针对方程y³ + py + q = 0,通过公式变形和恒等式转换,逐步解析出u和v的关系,最终导出解决立方方程的卡尔丹公式。读者将了解到如何从二次方程出发,求解三次方程的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卡尔丹公式简明推导

对于方程
y3+py+q=0 y^3+py+q=0 y3+py+q=0
有经验的选手会联想到公式(不要问我为啥)
(u+v)3=u3+3uv2+3u2v+v3① (u+v)^3=u³+3uv²+3u²v+v³ ① (u+v)3=u3+3uv2+3u2v+v3
①式可整理为如下形式
(u+v)3-3uv(u+v)-u3-v3=0 (u+v)^3-3uv(u+v)-u^3-v^3=0 (u+v)33uvu+v)-u3v3=0
令s=u+v,r=-3uv,j=-u³-v³则有
s3+rs+j=0 s³+rs+j=0 s3+rs+j=0
对照y³+py+q=0,那么有
p=-3uv② p=-3uv② p=3uv
q=-u3-v3③ q=-u³-v³③ q=u3v3
y=u+v④ y=u+v④ y=u+v
②左右同时立方,得到
p3=-27u3v3⑤ p³=-27u³v³⑤ p3=27u3v3

-u3v3=(p/3)3⑥ -u³v³=(p/3)^3 ⑥ u3v3=(p/3)3
③×v³得到
-u3v3-(v3)2=qv3⑦ -u³v³-(v³)²=qv³⑦ u3v3(v3)2=qv3
将⑥代入⑦得到
(p/3)3-(v3)2=qv3⑧ (p/3)³-(v³)²=qv³⑧ (p/3)3(v3)2=qv3
⑧是一个关于v³的二次方程,那么可得v关于p,q的恒等式(略)
同理可得u关于p,q的恒等式。结合式④,即得卡尔丹公式(见上篇文章,此处略)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值