数学题:
已知:ω=[-1+(-3)^(1/2)]/2.
有ω^3=1.得ω^2=1/ω.还有1/ω^2=ω.
求值:ω^(1/3)+1/ω^(1/3)=?
解题.
设:ω^(1/3)+1/ω^(1/3)=x,通过两边平方后:
(ω^2)^(1/3)+[ω^(1/3)][1/ω^(1/3)]+(1/ω^2)^(1/3)=x^2.(大家对[ω^(1/3)]^2=[ω^2]^(1/3).有争议,我后有证明是成立)
因为:ω^2=1/ω, 1/ω^2=ω.代入上式后:
1/ω^(1/3)+2+ω^(1/3)=x^2.又:ω^(1/3)+1/ω^(1/3)=x.得
一元二次方程x^2-x-2=0.,
再解方程得两个根x1=-1,x2=2.
因为ω^(1/3)+1/ω^(1/3)只有一个值,但上面经过平方后多了个增根,但ω^(1/3)+1/ω^(1/3)的值
必在-1和2之中.
再把两个根分别代入验算.我的验算全完是合数学逻辑.
并且如用x=3代入则矛盾.说明只有两个根x1=-1,x2=2..
补证:[ω^(1/3)]^2=[ω^2]^(1/3).
证:
令: [w^(1/3)]^2=(x^2)^(1/3).....(1).
(1)式得:[w^(1/3)][w^(1/3)]=(x^2)^(1/3)
即:w^(1/3+1/3)=(x^2)^(1/3).
w^(2/3)=(x^2)^(1/3).
上式两边立方:[ w^(2/3)]^3=[(x^2)^(1/3)]^3. 注意立方和开立方根是两回事.其中的[ w^(2/3)]^3就是一个数值,不是三个数值。
得:[ w^(2/3)][ w^(2/3)][ w^(2/3)]=[(x^2)^(1/3)][(x^2)^(1/3)][(x^2)^(1/3)]
得:w^(2/3+2/3+2/3)=(x^2)^(1/3+1/3+1/3).
得:w^(6/3)=(x^2)^(1)
得:w^2=x^2.
上式代入(1)式得:[w^(1/3)]^2=(w^2)^(1/3).
证毕!