matlab 卡丹 公式,卡丹公式欺骗了五百年所有数学家---最简铁证

数学题:

已知:ω=[-1+(-3)^(1/2)]/2.

有ω^3=1.得ω^2=1/ω.还有1/ω^2=ω.

求值:ω^(1/3)+1/ω^(1/3)=?

解题.

设:ω^(1/3)+1/ω^(1/3)=x,通过两边平方后:

(ω^2)^(1/3)+[ω^(1/3)][1/ω^(1/3)]+(1/ω^2)^(1/3)=x^2.(大家对[ω^(1/3)]^2=[ω^2]^(1/3).有争议,我后有证明是成立)

因为:ω^2=1/ω, 1/ω^2=ω.代入上式后:

1/ω^(1/3)+2+ω^(1/3)=x^2.又:ω^(1/3)+1/ω^(1/3)=x.得

一元二次方程x^2-x-2=0.,

再解方程得两个根x1=-1,x2=2.

因为ω^(1/3)+1/ω^(1/3)只有一个值,但上面经过平方后多了个增根,但ω^(1/3)+1/ω^(1/3)的值

必在-1和2之中.

再把两个根分别代入验算.我的验算全完是合数学逻辑.

并且如用x=3代入则矛盾.说明只有两个根x1=-1,x2=2..

补证:[ω^(1/3)]^2=[ω^2]^(1/3).

证:

令: [w^(1/3)]^2=(x^2)^(1/3).....(1).

(1)式得:[w^(1/3)][w^(1/3)]=(x^2)^(1/3)

即:w^(1/3+1/3)=(x^2)^(1/3).

w^(2/3)=(x^2)^(1/3).

上式两边立方:[ w^(2/3)]^3=[(x^2)^(1/3)]^3. 注意立方和开立方根是两回事.其中的[ w^(2/3)]^3就是一个数值,不是三个数值。

得:[ w^(2/3)][ w^(2/3)][ w^(2/3)]=[(x^2)^(1/3)][(x^2)^(1/3)][(x^2)^(1/3)]

得:w^(2/3+2/3+2/3)=(x^2)^(1/3+1/3+1/3).

得:w^(6/3)=(x^2)^(1)

得:w^2=x^2.

上式代入(1)式得:[w^(1/3)]^2=(w^2)^(1/3).

证毕!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值